Merge ffn_up and ffn_gate experts tensors (part 2) (#1139)

* Add ability to merge up+gate exps to more models

* We need to of course pass the merged tensor to build_ffn

* All the others

* Also Qwen3VL-MoE

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2026-01-13 08:07:52 +02:00
committed by GitHub
parent 54a1f68d32
commit 978202a754
2 changed files with 50 additions and 62 deletions

View File

@@ -1940,7 +1940,7 @@ ggml_cgraph * llm_build_context::build_llama() {
LLM_FFN_SILU, false,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SIGMOID,
cb, il, gf, true);
cb, il, gf, true, model.layers[il].ffn_up_gate_exps);
// Shared experts
ggml_tensor * shexp_out = llm_build_ffn(ctx0, lctx, nullptr, ffn_inp_normed,
@@ -2773,7 +2773,7 @@ ggml_cgraph * llm_build_context::build_dbrx() {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
@@ -3861,7 +3861,7 @@ ggml_cgraph * llm_build_context::build_qwen2moe() {
LLM_FFN_SILU, false,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(cur, "ffn_moe_out", il);
// FFN shared expert
@@ -4270,7 +4270,7 @@ ggml_cgraph * llm_build_context::build_qwen3vlmoe() {
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);
@@ -6783,7 +6783,7 @@ ggml_cgraph * llm_build_context::build_deepseek2() {
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(moe_out, "ffn_moe_out", il);
// FFN shared expert
@@ -6935,7 +6935,7 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
n_expert, n_expert_used,
LLM_FFN_SILU, hparams.expert_weights_norm, true, hparams.expert_weights_scale,
(llm_expert_gating_func_type) hparams.expert_gating_func,
LLM_FFN_SILU, cb, il, gf, true);
LLM_FFN_SILU, cb, il, gf, true, model.layers[il].ffn_up_gate_exps);
}
// residual and context vector
@@ -8016,7 +8016,7 @@ ggml_cgraph * llm_build_context::build_dots1() {
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(enum llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(moe_out, "ffn_moe_out", il);
{
@@ -8286,7 +8286,7 @@ ggml_cgraph * llm_build_context::build_hunyuan_moe() {
n_expert, n_expert_used,
LLM_FFN_SILU, true, false, 0.0f,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
LLM_FFN_SILU, cb, il, gf, true);
LLM_FFN_SILU, cb, il, gf, true, model.layers[il].ffn_up_gate_exps);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
@@ -8359,7 +8359,7 @@ ggml_cgraph * llm_build_context::build_mimo2() {
n_expert, n_expert_used,
LLM_FFN_SILU, true, false, 0.0f,
LLM_EXPERT_GATING_FUNC_SIGMOID,
LLM_FFN_SILU, cb, il, gf, true);
LLM_FFN_SILU, cb, il, gf, true, model.layers[il].ffn_up_gate_exps);
}
cur = lctx.cvec.apply_to(ctx0, cur, il);
@@ -8536,7 +8536,7 @@ ggml_cgraph * llm_build_context::build_bailingmoe2() {
LLM_FFN_SILU, hparams.expert_weights_norm,
true, hparams.expert_weights_scale,
(llm_expert_gating_func_type) hparams.expert_gating_func,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(moe_out, "ffn_moe_out", il);
ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, lctx, nullptr, cur,
@@ -8668,7 +8668,7 @@ ggml_cgraph* llm_build_context::build_minimaxm2() {
LLM_FFN_SILU, true,
false, 0,
(llm_expert_gating_func_type)hparams.expert_gating_func,
cb, il, gf);
cb, il, gf, false, model.layers[il].ffn_up_gate_exps);
cb(cur, "ffn_moe_out", il);
cur = ggml_add(ctx0, cur, ffn_inp);

View File

@@ -33,6 +33,8 @@ struct create_tensors_helper : public create_tensors_helper_interface {
bool merge_up_gate_exps(const LLM_TN & tn, int i, int bias);
bool create_std_ffn_exps(int64_t n_embd, const LLM_TN & tn, int i, int flags = 0, int n_ff_exps_input = 0);
bool create_tensors() override;
bool create_llama_tensors(const LLM_TN & tn);
@@ -532,9 +534,7 @@ bool create_tensors_helper::create_llama4_tensors(const LLM_TN & tn) {
int n_ff_exp = hparams.n_ff_exp;
layer.ffn_gate_inp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
// Shared expert
const int64_t n_ff_shexp = n_ff_exp;
@@ -639,9 +639,7 @@ bool create_tensors_helper::create_dbrx_tensors(const LLM_TN & tn) {
layer.attn_out_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
}
return use_mmap_buffer;
}
@@ -1082,13 +1080,8 @@ bool create_tensors_helper::create_qwen2_moe_tensors(const LLM_TN & tn) {
throw std::runtime_error("n_expert_used must be > 0 for QWEN2MOE");
}
// MoE branch
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
// Shared expert branch
const int64_t n_ff_shexp = hparams.n_ff_shexp ? hparams.n_ff_shexp : n_ff;
@@ -1176,17 +1169,8 @@ bool create_tensors_helper::create_qwen3_moe_tensors(const LLM_TN & tn) {
throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
}
// MoE branch
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
bool merged = ml.merge_up_gate_exps && merge_up_gate_exps(tn, i, 0);
if (merged) {
use_mmap_buffer = false;
} else {
layer.ffn_up_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_gate_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
}
layer.ffn_down_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
}
return use_mmap_buffer;
}
@@ -1224,12 +1208,13 @@ bool create_tensors_helper::create_mimo2_tensors(const LLM_TN & tn) {
layer.ffn_up = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
// MoE branch
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
layer.ffn_gate_inp = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_gate_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_down_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_up_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_exp_probs_b = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
layer.ffn_gate_inp = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert},
llama_model_loader::TENSOR_NOT_REQUIRED);
if (layer.ffn_gate_inp) {
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
layer.ffn_exp_probs_b = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert},
llama_model_loader::TENSOR_NOT_REQUIRED);
}
}
return use_mmap_buffer;
}
@@ -1860,9 +1845,7 @@ bool create_tensors_helper::create_deepseek2_tensors(const LLM_TN & tn) {
GGML_ASSERT(n_expert_used > 0);
// MoE branch
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
// Shared expert branch
layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared});
@@ -1935,17 +1918,11 @@ bool create_tensors_helper::create_glm4_moe_tensors(const LLM_TN & tn) {
layer.ffn_exp_probs_b = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, flags);
// MoE branch
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
layer.ffn_gate_exps = create_tensor(ffn_ctx,
tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
layer.ffn_down_exps = create_tensor(ffn_ctx,
tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert }, flags);
layer.ffn_up_exps = create_tensor(ffn_ctx,
tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert }, flags);
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i, flags);
// Shared expert
if (n_expert_shared > 0) {
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
const int64_t n_ff_shexp = n_ff_exp * n_expert_shared;
layer.ffn_gate_shexp = create_tensor(ffn_ctx,
tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp }, flags);
@@ -2396,9 +2373,7 @@ bool create_tensors_helper::create_dots1_tensors(const LLM_TN & tn) {
throw std::runtime_error("n_expert_used must be > 0");
}
// MoE branch
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, 0);
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i);
// Shared expert branch
layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * n_expert_shared}, 0);
layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * n_expert_shared, n_embd}, 0);
@@ -2451,9 +2426,7 @@ bool create_tensors_helper::create_bailingmoe2_tensors(const LLM_TN & tn) {
layer.ffn_exp_probs_b = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), {n_expert},
llama_model_loader::TENSOR_NOT_REQUIRED | flags);
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i, flags);
layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_shexp}, flags);
layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd}, flags);
@@ -2549,9 +2522,7 @@ bool create_tensors_helper::create_hunyuan_tensors(const LLM_TN & tn) {
layer.ffn_norm = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate_inp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i, 0, n_ff);
layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
layer.ffn_up_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
@@ -2651,9 +2622,7 @@ bool create_tensors_helper::create_minimaxm2_tensors(const LLM_TN & tn) {
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd }, 0);
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), { n_embd, n_expert }, 0);
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff, n_expert }, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert }, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff, n_expert }, 0);
use_mmap_buffer &= !create_std_ffn_exps(n_embd, tn, i, 0, n_ff);
layer.ffn_exp_probs_b = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_EXP_PROBS_B, "bias", i), { n_expert }, 0);
}
return use_mmap_buffer;
@@ -2746,6 +2715,25 @@ bool create_tensors_helper::merge_up_gate_exps(const LLM_TN & tn, int i, int bia
return true;
}
bool create_tensors_helper::create_std_ffn_exps(int64_t n_embd, const LLM_TN & tn, int i, int flags, int n_ff_exps_input) {
const int64_t n_expert = model.hparams.n_expert;
const int64_t n_expert_used = model.hparams.n_expert_used;
const int64_t n_ff = model.hparams.n_ff();
const int64_t n_ff_exp = n_ff_exps_input > 0 ? n_ff_exps_input : model.hparams.n_ff_exp ? model.hparams.n_ff_exp : n_ff / n_expert_used;
auto & layer = model.layers[i];
auto ffn_ctx = ctx_for_layer_split(i);
bool merged = flags == 0 && ml.merge_up_gate_exps && merge_up_gate_exps(tn, i, 0);
if (!merged) {
layer.ffn_up_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
layer.ffn_gate_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}, flags);
}
layer.ffn_down_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}, flags);
return merged;
}
bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias, bool ignore_attn_scale) {
auto& hparams = model.hparams;
const int64_t n_head = hparams.n_head();