More models

This commit is contained in:
Kawrakow
2026-01-18 13:37:40 +00:00
parent c7deb32142
commit ae5c269371

View File

@@ -1835,7 +1835,7 @@ ggml_cgraph * llm_build_context::build_llama() {
KQ_mask_swa = build_inp_KQ_mask_swa();
}
ggml_tensor * inp_out_ids = build_inp_out_ids();
auto inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
//const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : 1.f;
@@ -1902,15 +1902,14 @@ ggml_cgraph * llm_build_context::build_llama() {
}
//printf("%s: attn result for layer %d is %s, %s\n", __func__, il, cur->name, ggml_op_name(cur->op));
if (il == n_layer - 1 && use_rope) {
if (il == n_layer - 1 && !use_rope && inp_out_ids) {
// skip computing output for unused tokens
auto inp_out_ids = build_inp_out_ids();
n_tokens = n_outputs;
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
cb(cur, "last_attn", il);
if (!use_rope) {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
cb(inpSA, "last_ffn_inp", il);
}
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
cb(inpSA, "last_ffn_inp", il);
}
// For Granite architecture
@@ -3949,12 +3948,14 @@ ggml_cgraph * llm_build_context::build_qwen3() {
ext_factor, attn_factor, beta_fast, beta_slow);
}
auto inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
for (int il = 0; il < n_layer; ++il) {
struct ggml_tensor * inpSA = inpL;
if (!rope_cache) {
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr, KQ_mask, nullptr, nullptr,
1.0f/sqrtf(float(n_embd_head)), 0.0f, 0, il, true, false, true);
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, il == n_layer-1 ? inp_out_ids : nullptr, nullptr,
KQ_mask, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), 0.0f, 0, il, true, false, true);
} else {
// norm
@@ -3992,7 +3993,7 @@ ggml_cgraph * llm_build_context::build_qwen3() {
}
}
if (il == n_layer - 1) {
if (il == n_layer - 1 && rope_cache && inp_out_ids) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
@@ -4051,13 +4052,6 @@ ggml_cgraph * llm_build_context::build_qwen3moe() {
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, inp_out_ids, nullptr,
KQ_mask, nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), 0.0f, 0, il, true, false, true);
//if (il == n_layer - 1) {
// // skip computing output for unused tokens
// struct ggml_tensor * inp_out_ids = build_inp_out_ids();
// cur = ggml_get_rows(ctx0, cur, inp_out_ids);
// //inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
//}
auto ffn_inp = cur;
cur = llm_build_std_moe_ffn(ctx0, lctx, model.layers[il].ffn_norm, ffn_inp,
@@ -4134,7 +4128,7 @@ ggml_cgraph * llm_build_context::build_qwen3vl() {
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr, KQ_mask,
nullptr, nullptr, 1.0f/sqrtf(float(n_embd_head)), 0.0f, 0, il, true, false, true, false, true);
if (il == n_layer - 1) {
if (il == n_layer - 1 && n_tokens > 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
@@ -6852,7 +6846,7 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
// output token IDs (for last layer cropping)
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
struct ggml_tensor * inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
auto rope_cache = model.split_mode != LLAMA_SPLIT_MODE_GRAPH && cparams.rope_cache && (rope_type == LLAMA_ROPE_TYPE_NEOX || rope_type == LLAMA_ROPE_TYPE_NORM) ?
ggml_rope_cache(ctx0, inp_pos, nullptr, n_embd_head, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
@@ -6868,7 +6862,8 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
// self-attention
if (rope_cache == nullptr) {
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr, KQ_mask, nullptr, nullptr, kq_scale, 0.0f, 0, il, true, false, true);
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr,
KQ_mask, nullptr, nullptr, kq_scale, 0.0f, 0, il, true, false, true);
} else {
// Pre-attention norm
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
@@ -6908,7 +6903,9 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
if (il == n_transformer_layers - 1 && inp_out_ids) {
// skip computing output for unused tokens
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
if (rope_cache) {
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
}
// residual connection for attention output
@@ -7257,11 +7254,12 @@ ggml_cgraph * llm_build_context::build_cohere2() {
struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask;
// self-attention
auto attn_out = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr, KQ_mask_l, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), 0.f,
auto attn_out = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr,
KQ_mask_l, nullptr, nullptr, 1.0f / sqrtf(float(n_embd_head)), 0.f,
is_sliding ? hparams.n_swa : 0, il, is_sliding, false, true, true);
cb(attn_out, "attn_out", il);
if (il == n_layer - 1) {
if (il == n_layer - 1 && n_tokens > 1) {
// skip computing output for unused tokens
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
attn_out = ggml_get_rows(ctx0, attn_out, inp_out_ids);
@@ -8197,7 +8195,7 @@ ggml_cgraph * llm_build_context::build_ernie4_5_moe() {
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
// output token IDs (for last layer cropping)
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
struct ggml_tensor * inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Ernie 4.5 MoE requires n_moe_layer_step > 0");
for (int il = 0; il < n_layer; ++il) {
@@ -8270,7 +8268,7 @@ ggml_cgraph * llm_build_context::build_hunyuan_moe() {
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
ggml_tensor * inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
for (int il = 0; il < n_layer; ++il) {
@@ -8325,7 +8323,7 @@ ggml_cgraph * llm_build_context::build_mimo2() {
// inp_pos - contains the positions
struct ggml_tensor * inp_pos = build_inp_pos();
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
struct ggml_tensor * inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
@@ -8335,10 +8333,11 @@ ggml_cgraph * llm_build_context::build_mimo2() {
const bool is_sliding = model.hparams.swa_layers[il];
auto KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask;
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr, KQ_mask_l, model.layers[il].attn_sinks,
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr,
KQ_mask_l, model.layers[il].attn_sinks,
nullptr, 1.0f/sqrtf(float(n_embd_head_k)), 0.0f, is_sliding ? hparams.n_swa : 0, il, true, false, true);
if (il == n_layer - 1) {
if (il == n_layer - 1 && inp_out_ids) {
// skip computing output for unused tokens
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
@@ -8398,6 +8397,7 @@ ggml_cgraph * llm_build_context::build_openai_moe() {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
ggml_tensor * inp_pos = build_inp_pos();
auto inp_out_ids = n_tokens > 1 ? build_inp_out_ids() : nullptr;
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
struct ggml_tensor * KQ_mask_swa = build_inp_KQ_mask_swa();
@@ -8410,14 +8410,13 @@ ggml_cgraph * llm_build_context::build_openai_moe() {
struct ggml_tensor * KQ_mask_l = is_sliding ? KQ_mask_swa : KQ_mask;
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, nullptr, nullptr, KQ_mask_l,
model.layers[il].attn_sinks, nullptr, kq_scale, 0.0f, is_sliding ? hparams.n_swa : 0, il, true, false, true);
cur = build_std_attention(gf, model.layers[il].attn_norm, inpL, inp_pos, il == n_layer - 1 ? inp_out_ids : nullptr, nullptr,
KQ_mask_l, model.layers[il].attn_sinks, nullptr, kq_scale, 0.0f, is_sliding ? hparams.n_swa : 0, il, true, false, true);
if (il == n_layer - 1) {
// skip computing output for unused tokens
ggml_tensor * inp_out_ids = build_inp_out_ids();
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
}
//if (il == n_layer - 1 && inp_out_ids) {
// // skip computing output for unused tokens
// cur = ggml_get_rows(ctx0, cur, inp_out_ids);
//}
bool use_dup_bias = cur->ne[1] < 32 && model.layers[il].ffn_up_exps_b_dup &&
model.layers[il].ffn_gate_exps_b_dup &&