mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-10 16:30:12 +00:00
Better strategy for GPU offload (#520)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -125,6 +125,8 @@ option(GGML_CUDA_F16 "ggml: use 16 bit floats for some ca
|
||||
set (GGML_CUDA_KQUANTS_ITER "2" CACHE STRING
|
||||
"ggml: iters./thread per block for Q2_K/Q6_K")
|
||||
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
||||
"ggml: min batch size for GPU offload")
|
||||
set (GGML_CUDA_MIN_BATCH_OFFLOAD "32" CACHE STRING
|
||||
"ggml: max. batch size for using peer access")
|
||||
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
||||
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)
|
||||
|
||||
@@ -382,6 +382,7 @@ if (GGML_CUDA)
|
||||
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
||||
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
||||
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
||||
add_compile_definitions(GGML_CUDA_MIN_BATCH_OFFLOAD=${GGML_CUDA_MIN_BATCH_OFFLOAD})
|
||||
|
||||
if (GGML_CUDA_USE_GRAPHS)
|
||||
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
||||
|
||||
@@ -3656,10 +3656,33 @@ GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, gg
|
||||
}
|
||||
|
||||
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
|
||||
const int min_batch_size = 32;
|
||||
constexpr int min_batch_size = GGML_CUDA_MIN_BATCH_OFFLOAD;
|
||||
|
||||
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
||||
(op->ne[2] >= min_batch_size && (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE));
|
||||
// Why do we want to do this? The heuristics that the batch must have more than min_batch_size tokens to be worth it
|
||||
// offloading the required model weights comes from dense models. For MoE models, the average number of tokens
|
||||
// each expert deals with in a batch is (active_experts / total_experts) * batch_size. Hence, according to the
|
||||
// learned heuristics, we need (active_experts / total_experts) * batch_size >= min_batch_size.
|
||||
// Rearranging we get
|
||||
//
|
||||
// batch_size * active_experts >= min_batch_size * total_experts
|
||||
//
|
||||
// as the condition for offloading model weights resinding in RAM to the GPU.
|
||||
// In this case, the number of tokens is not as usual in op->ne[1] but rather in op->ne[2].
|
||||
if (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE) {
|
||||
auto ids = op->op == GGML_OP_MUL_MAT_ID ? op->src[2] : op->src[3];
|
||||
int64_t batch_size = op->ne[2];
|
||||
if (batch_size < min_batch_size) return false;
|
||||
int64_t n_experts_tot = op->src[0]->ne[2];
|
||||
int64_t n_experts_active = ids->ne[0];
|
||||
//printf("%s(%s): op->ne[2] = %ld, n_experts_tot = %ld, n_experts_active = %ld, ids: %s, %ld x %ld x %ld x %ld\n", __func__, op->name, op->ne[2], n_experts_tot, n_experts_active, ids->name, ids->ne[0], ids->ne[1], ids->ne[2], ids->ne[3]);
|
||||
return batch_size*n_experts_active >= min_batch_size*n_experts_tot;
|
||||
}
|
||||
|
||||
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
|
||||
|
||||
// Original:
|
||||
//return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
|
||||
// (op->ne[2] >= min_batch_size && (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE));
|
||||
|
||||
GGML_UNUSED(backend);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user