Better strategy for GPU offload (#520)

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-06-12 19:25:11 +03:00
committed by GitHub
parent 7b1a3eece7
commit b57bd8658b
3 changed files with 29 additions and 3 deletions

View File

@@ -125,6 +125,8 @@ option(GGML_CUDA_F16 "ggml: use 16 bit floats for some ca
set (GGML_CUDA_KQUANTS_ITER "2" CACHE STRING
"ggml: iters./thread per block for Q2_K/Q6_K")
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"ggml: min batch size for GPU offload")
set (GGML_CUDA_MIN_BATCH_OFFLOAD "32" CACHE STRING
"ggml: max. batch size for using peer access")
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
option(GGML_CUDA_NO_VMM "ggml: do not try to use CUDA VMM" OFF)

View File

@@ -382,6 +382,7 @@ if (GGML_CUDA)
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
add_compile_definitions(GGML_CUDA_MIN_BATCH_OFFLOAD=${GGML_CUDA_MIN_BATCH_OFFLOAD})
if (GGML_CUDA_USE_GRAPHS)
add_compile_definitions(GGML_CUDA_USE_GRAPHS)

View File

@@ -3656,10 +3656,33 @@ GGML_CALL static bool ggml_backend_cuda_supports_buft(ggml_backend_t backend, gg
}
GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
const int min_batch_size = 32;
constexpr int min_batch_size = GGML_CUDA_MIN_BATCH_OFFLOAD;
return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
(op->ne[2] >= min_batch_size && (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE));
// Why do we want to do this? The heuristics that the batch must have more than min_batch_size tokens to be worth it
// offloading the required model weights comes from dense models. For MoE models, the average number of tokens
// each expert deals with in a batch is (active_experts / total_experts) * batch_size. Hence, according to the
// learned heuristics, we need (active_experts / total_experts) * batch_size >= min_batch_size.
// Rearranging we get
//
// batch_size * active_experts >= min_batch_size * total_experts
//
// as the condition for offloading model weights resinding in RAM to the GPU.
// In this case, the number of tokens is not as usual in op->ne[1] but rather in op->ne[2].
if (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE) {
auto ids = op->op == GGML_OP_MUL_MAT_ID ? op->src[2] : op->src[3];
int64_t batch_size = op->ne[2];
if (batch_size < min_batch_size) return false;
int64_t n_experts_tot = op->src[0]->ne[2];
int64_t n_experts_active = ids->ne[0];
//printf("%s(%s): op->ne[2] = %ld, n_experts_tot = %ld, n_experts_active = %ld, ids: %s, %ld x %ld x %ld x %ld\n", __func__, op->name, op->ne[2], n_experts_tot, n_experts_active, ids->name, ids->ne[0], ids->ne[1], ids->ne[2], ids->ne[3]);
return batch_size*n_experts_active >= min_batch_size*n_experts_tot;
}
return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
// Original:
//return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) ||
// (op->ne[2] >= min_batch_size && (op->op == GGML_OP_MUL_MAT_ID || op->op == GGML_OP_MOE_FUSED_UP_GATE));
GGML_UNUSED(backend);
}