mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Correctly accumulate adaptive_p sampling time
This commit is contained in:
@@ -473,7 +473,7 @@ static llama_token llama_sampling_sample_impl(
|
||||
id = llama_sample_token_mirostat_v2(ctx_main, &cur_p, mirostat_tau, mirostat_eta, &ctx_sampling->mirostat_mu);
|
||||
} else if (adaptive_target >= 0.0f && ctx_sampling->adapt_p_ctx!=nullptr) {
|
||||
// adaptive p sampling
|
||||
llama_prep_adaptive_p(&cur_p, ctx_sampling->adapt_p_ctx);
|
||||
llama_prep_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx);
|
||||
sampler_queue(ctx_main, params, ctx_sampling, cur_p, std::max(1, params.min_keep));
|
||||
id = llama_sample_token_adaptive_p(ctx_main, &cur_p, ctx_sampling->adapt_p_ctx);
|
||||
} else {
|
||||
|
||||
@@ -1389,15 +1389,14 @@ LLAMA_API struct llama_grammar* llama_sampler_init_grammar_lazy_patterns(
|
||||
const float decay,
|
||||
const uint32_t seed);
|
||||
|
||||
void llama_prep_adaptive_p(
|
||||
void llama_prep_adaptive_p(struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx);
|
||||
|
||||
/// @details Adaptive p sampler described in https://github.com/MrJackSpade/adaptive-p-docs/blob/main/README.md
|
||||
void llama_sample_adaptive_p(
|
||||
struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx);
|
||||
void llama_sample_adaptive_p(struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx);
|
||||
|
||||
|
||||
/// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
|
||||
|
||||
@@ -1061,25 +1061,28 @@ llama_token llama_sample_token_adaptive_p_impl(
|
||||
const size_t idx = std::distance(ctx->cum_probs.begin(), iter);
|
||||
llama_token id = candidates->data[idx].id;
|
||||
|
||||
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
smpl->n_sample++;
|
||||
|
||||
GGML_ASSERT(id < int(ctx->orig_prob.size()));
|
||||
if (auto update_prob = ctx->orig_prob[id]; update_prob > 0) {
|
||||
ctx->weighted_sum = ctx->decay * ctx->weighted_sum + update_prob;
|
||||
ctx->total_weight = ctx->decay * ctx->total_weight + 1.0f;
|
||||
}
|
||||
|
||||
smpl->t_sample_us += ggml_time_us() - t_start_sample_us;
|
||||
smpl->n_sample++;
|
||||
|
||||
return id;
|
||||
}
|
||||
|
||||
void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
void llama_sample_adaptive_p_impl(struct llama_sampling * ctx, llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
if (adapt_p_ctx->target < 0.0f) {
|
||||
// sampler is disabled
|
||||
llama_sample_softmax_impl(nullptr, candidates);
|
||||
return;
|
||||
}
|
||||
|
||||
auto t_start = ggml_time_us();
|
||||
|
||||
// incomplete softmax because final division can be fused
|
||||
float max_l = candidates->data[0].logit;
|
||||
if (!candidates->sorted) {
|
||||
@@ -1120,12 +1123,16 @@ void llama_sample_adaptive_p_impl(llama_token_data_array * candidates, struct ll
|
||||
}
|
||||
candidates->sorted = false;
|
||||
adapt_p_ctx->max_xform_logit = max_logit;
|
||||
|
||||
ctx->t_sample_us += ggml_time_us() - t_start;
|
||||
}
|
||||
|
||||
void llama_prep_adaptive_p_impl(
|
||||
struct llama_sampling * smpl,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
constexpr float kDelta = 16.6f;
|
||||
auto t_start = ggml_time_us();
|
||||
auto & orig_prob = adapt_p_ctx->orig_prob;
|
||||
if (candidates->size != orig_prob.size() || candidates->sorted) {
|
||||
LLAMA_LOG_ERROR("%s: this function must be called before any other sampler has been applied\n", __func__);
|
||||
@@ -1146,6 +1153,7 @@ void llama_prep_adaptive_p_impl(
|
||||
orig_prob[j] = prob;
|
||||
}
|
||||
adapt_p_ctx->cum_orig_prob = cum_prob;
|
||||
if (smpl) smpl->t_sample_us += ggml_time_us() - t_start;
|
||||
}
|
||||
|
||||
struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(int n_vocab,
|
||||
|
||||
@@ -89,10 +89,12 @@ struct llama_sampler_adaptive_p * llama_init_adaptive_p_impl(int n_vocab,
|
||||
const uint32_t seed);
|
||||
|
||||
void llama_prep_adaptive_p_impl(
|
||||
struct llama_sampling * smpl,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx);
|
||||
|
||||
void llama_sample_adaptive_p_impl(
|
||||
struct llama_sampling * smpl,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx);
|
||||
|
||||
|
||||
@@ -7687,15 +7687,14 @@ void llama_sample_dry([[maybe_unused]] struct llama_context* ctx, struct llama_s
|
||||
llama_sampler_dry_apply(smpl, candidates_p);
|
||||
}
|
||||
|
||||
void llama_sample_adaptive_p(
|
||||
[[maybe_unused]] struct llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
llama_sample_adaptive_p_impl(candidates, adapt_p_ctx);
|
||||
void llama_sample_adaptive_p(llama_context * ctx,
|
||||
llama_token_data_array * candidates,
|
||||
llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
llama_sample_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx);
|
||||
}
|
||||
|
||||
void llama_prep_adaptive_p(llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
llama_prep_adaptive_p_impl(candidates, adapt_p_ctx);
|
||||
void llama_prep_adaptive_p(struct llama_context * ctx, llama_token_data_array * candidates, struct llama_sampler_adaptive_p * adapt_p_ctx) {
|
||||
llama_prep_adaptive_p_impl(&ctx->sampling, candidates, adapt_p_ctx);
|
||||
}
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user