Split mode graph for qwen3moe

This commit is contained in:
Kawrakow
2025-12-01 11:56:05 +00:00
parent 63d0389e18
commit c51968b6d8
4 changed files with 73 additions and 44 deletions

View File

@@ -1637,6 +1637,41 @@ static ggml_tensor * build_output(llama_context & lctx, ggml_context * ctx, ggml
return cur;
}
static ggml_tensor * build_output(llama_context & lctx, ggml_context * ctx, ggml_tensor * cur, ggml_tensor * output, ggml_tensor * output_norm, const llm_build_cb & cb) {
// lm_head
if (output->extra) {
auto split_output = (ggml_split_tensor_t *)output->extra;
auto split_output_norm = output_norm && output_norm->extra ? (ggml_split_tensor_t *)output_norm->extra : nullptr;
std::vector<ggml_tensor *> o;
o.reserve(split_output->n_device);
for (int id = 0; id < split_output->n_device; ++id) {
auto split = split_output->splits[id];
if (!split) continue;
if (output_norm) {
auto the_norm = split_output_norm ? split_output_norm->splits[id] : output_norm;
auto cur_normed = llm_build_context::llm_build_norm(ctx, cur, lctx.model.hparams, the_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur_normed, "output_normed", 1000*(id+1));
o.push_back(llm_build_context::llm_build_lora_mm(lctx, ctx, split, cur_normed));
} else {
o.push_back(llm_build_context::llm_build_lora_mm(lctx, ctx, split, cur));
}
cb(o.back(), "output", id);
}
if (o.size() == 1) cur = o.front();
cur = ggml_concat(ctx, o[0], o[1], 0);
for (int id = 2; id < int(o.size()); ++id) {
cur = ggml_concat(ctx, cur, o[id], 0);
}
} else {
if (output_norm) {
cur = llm_build_context::llm_build_norm(ctx, cur, lctx.model.hparams, output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "output_normed", -1);
}
cur = llm_build_context::llm_build_lora_mm(lctx, ctx, output, cur);
}
return cur;
}
ggml_cgraph * llm_build_context::build_llama() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, model.max_nodes(), false);
@@ -1826,11 +1861,8 @@ ggml_cgraph * llm_build_context::build_llama() {
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = build_output(lctx, ctx0, cur, model.output, cb);
cur = build_output(lctx, ctx0, cur, model.output, model.output_norm, cb);
// For Granite architecture
if (hparams.f_logit_scale) {
@@ -3792,22 +3824,19 @@ ggml_cgraph * llm_build_context::build_qwen3moe() {
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// MoE branch
cur = llm_build_norm(ctx0, ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
cur = llm_build_moe_ffn(ctx0, lctx, cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true,
false, 0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb, il, gf);
cb(cur, "ffn_moe_out", il);
cur = llm_build_std_moe_ffn(ctx0, lctx, model.layers[il].ffn_norm, ffn_inp,
model.layers[il].ffn_gate_inp, nullptr,
model.layers[il].ffn_up_exps, nullptr,
model.layers[il].ffn_gate_exps, nullptr,
model.layers[il].ffn_down_exps, nullptr,
model.layers[il].ffn_exp_probs_b,
nullptr, nullptr, // we don't have shared expert biases?
nullptr, nullptr,
nullptr, nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, true, false, 0.0f,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
LLM_FFN_SILU, cb, il, gf);
cur = ggml_add(ctx0, cur, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
@@ -3819,11 +3848,7 @@ ggml_cgraph * llm_build_context::build_qwen3moe() {
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cur = build_output(lctx, ctx0, cur, model.output, model.output_norm, cb);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);
@@ -6777,12 +6802,8 @@ ggml_cgraph * llm_build_context::build_glm4_moe() {
cur = inpL;
// final norm
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
// lm head
cur = build_output(lctx, ctx0, cur, model.output, cb);
cur = build_output(lctx, ctx0, cur, model.output, model.output_norm, cb);
cb(cur, "result_output", -1);
ggml_build_forward_expand(gf, cur);

View File

@@ -352,11 +352,11 @@ ggml_tensor * create_tensors_helper::create_tensor(ggml_context * ctx, const std
void create_tensors_helper::create_embd_output(const LLM_TN & tn, int n_embd, int n_vocab, bool has_norm, bool use_ctx_split) {
model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
if (has_norm) {
model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
}
auto out_ctx = use_ctx_split ? ctx_output_split : ctx_output;
model.output = create_tensor(out_ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
if (has_norm) {
model.output_norm = create_tensor(out_ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
}
model.output = create_tensor(out_ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
@@ -1142,11 +1142,11 @@ bool create_tensors_helper::create_qwen3_moe_tensors(const LLM_TN & tn) {
// output
{
model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output_norm = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
}
@@ -1156,18 +1156,19 @@ bool create_tensors_helper::create_qwen3_moe_tensors(const LLM_TN & tn) {
auto & layer = model.layers[i];
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
layer.attn_norm = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
use_mmap_buffer &= !merge_qkv(tn, i, 0);
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
layer.attn_k_norm = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k});
layer.attn_q_norm = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k});
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
auto ffn_ctx = model.split_mode == LLAMA_SPLIT_MODE_GRAPH ? ctx_split : ctx_layer;
layer.ffn_norm = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
layer.ffn_gate_inp = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
if (n_expert == 0) {
throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
@@ -1179,9 +1180,9 @@ bool create_tensors_helper::create_qwen3_moe_tensors(const LLM_TN & tn) {
// MoE branch
const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_gate_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
layer.ffn_down_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
layer.ffn_up_exps = create_tensor(ffn_ctx, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
}
return use_mmap_buffer;
}
@@ -3061,9 +3062,14 @@ bool create_tensors_helper::create_tensors() {
auto ctx_split = ctx_map[model.buft_output.buft_matrix];
auto split = create_split(model.output->ne[1], 16, model.splits);
prepare_split_tensors(1, ctx_split, model.output, model.split_output, split, mem_used);
if (auto it = split_tensors.find(model.output_norm); it != split_tensors.end() && !ggml_backend_buft_is_host(model.buft_output.buft_matrix)) {
auto ctx_split = ctx_map[model.buft_output.buft_matrix];
prepare_split_tensors(-1, ctx_split, model.output_norm, model.split_output_norm, split, mem_used);
}
}
}
}
LLAMA_LOG_INFO("Estimated model buffer size per device:\n");
for (int i = 0; i < int(mem_used.size()); ++i) {
LLAMA_LOG_INFO(" Device %d: %8.2f MiB\n", i, mem_used[i]/1024./1024.);

View File

@@ -344,6 +344,7 @@ struct llama_model {
struct ggml_tensor * output_norm_enc;
llama_split_tensor split_output;
llama_split_tensor split_output_norm;
std::vector<llama_layer> layers;

View File

@@ -1726,6 +1726,7 @@ static void ggml_backend_add_from_device(llama_context* ctx, ggml_backend_t back
static bool is_model_split_supported(const llama_model & model) {
static std::unordered_set<llm_arch> k_supported = {
LLM_ARCH_LLAMA,
LLM_ARCH_QWEN3MOE,
LLM_ARCH_GLM4_MOE,
};
auto it = k_supported.find(model.arch);