mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Add mqkv and rcache for Gemma3 (#972)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -4952,8 +4952,6 @@ ggml_cgraph * llm_build_context::build_gemma2() {
|
||||
ggml_cgraph * llm_build_context::build_gemma3() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
@@ -4977,6 +4975,15 @@ ggml_cgraph * llm_build_context::build_gemma3() {
|
||||
// 5 layers of local attention followed by 1 layer of global attention
|
||||
static const int sliding_window_pattern = 6;
|
||||
|
||||
ggml_tensor * rope_cache = nullptr;
|
||||
ggml_tensor * rope_cache_l = nullptr;
|
||||
if (cparams.rope_cache && (rope_type == LLAMA_ROPE_TYPE_NEOX || rope_type == LLAMA_ROPE_TYPE_NORM)) {
|
||||
rope_cache = ggml_rope_cache(ctx0, inp_pos, nullptr, n_rot, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
rope_cache_l = ggml_rope_cache(ctx0, inp_pos, nullptr, n_rot, n_rot, rope_type, n_ctx_orig, 10000.0f, 1.0f,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
const bool is_sliding = (il + 1) % sliding_window_pattern;
|
||||
const float freq_base_l = is_sliding ? 10000.0f : freq_base;
|
||||
@@ -4989,24 +4996,24 @@ ggml_cgraph * llm_build_context::build_gemma3() {
|
||||
|
||||
// self-attention
|
||||
{
|
||||
auto [Qcur, Kcur, Vcur] = llm_build_mul_mat_qkv(gf, cur, model.layers[il].wq, nullptr,
|
||||
model.layers[il].wk, nullptr,
|
||||
model.layers[il].wv, nullptr, 0, il);
|
||||
auto [Qcur, Kcur, Vcur] = llm_build_mul_mat_qkv(gf, cur,
|
||||
model.layers[il].wqkv, nullptr,
|
||||
model.layers[il].wqk, nullptr,
|
||||
model.layers[il].wq, nullptr, model.layers[il].wk, nullptr, model.layers[il].wv, nullptr,
|
||||
model.layers[il].attn_q_norm, model.layers[il].attn_k_norm, 0, il);
|
||||
|
||||
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens);
|
||||
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Qcur, "Qcur_normed", il);
|
||||
if (rope_cache) {
|
||||
auto rcache = is_sliding ? rope_cache_l : rope_cache;
|
||||
Qcur = ggml_rope_fast(ctx0, Qcur, rcache);
|
||||
Kcur = ggml_rope_fast(ctx0, Kcur, rcache);
|
||||
} else {
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
||||
Qcur = ggml_rope_ext(ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
}
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens);
|
||||
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
||||
cb(Kcur, "Kcur_normed", il);
|
||||
|
||||
Kcur = ggml_rope_ext(ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig, freq_base_l, freq_scale_l,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, NULL,
|
||||
|
||||
@@ -28,7 +28,7 @@ struct create_tensors_helper : public create_tensors_helper_interface {
|
||||
|
||||
virtual size_t get_ctx_size() const override { return ctx_size; }
|
||||
|
||||
bool merge_qkv(const LLM_TN & tn, int i, int bias);
|
||||
bool merge_qkv(const LLM_TN & tn, int i, int bias, bool ignore_attn_scale = false);
|
||||
|
||||
bool create_tensors() override;
|
||||
|
||||
@@ -1313,9 +1313,8 @@ bool create_tensors_helper::create_gemma_tensors(const LLM_TN & tn, int version)
|
||||
|
||||
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
use_mmap_buffer &= !merge_qkv(tn, i, 0, true);
|
||||
|
||||
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
if (version > 1) {
|
||||
layer.attn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_POST_NORM, "weight", i), {n_embd});
|
||||
@@ -2524,7 +2523,7 @@ bool create_tensors_helper::create_smollm3_tensors(const LLM_TN & tn) {
|
||||
return use_mmap_buffer;
|
||||
}
|
||||
|
||||
bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias) {
|
||||
bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias, bool ignore_attn_scale) {
|
||||
auto& hparams = model.hparams;
|
||||
const int64_t n_head = hparams.n_head();
|
||||
const int64_t n_head_kv = hparams.n_head_kv();
|
||||
@@ -2547,7 +2546,7 @@ bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias) {
|
||||
GGML_ASSERT(wq && wk && wv);
|
||||
|
||||
bool fused_qkv = false;
|
||||
if (ml.merge_qkv && wq->type == wk->type && wq->type == wv->type && hparams.f_attention_scale == 0.0f) {
|
||||
if (ml.merge_qkv && wq->type == wk->type && wq->type == wv->type && (ignore_attn_scale || hparams.f_attention_scale == 0.0f)) {
|
||||
GGML_ASSERT(wq->ne[0] == n_embd && wq->ne[1] == n_head * n_embd_head_k);
|
||||
GGML_ASSERT(wk->ne[0] == n_embd && wk->ne[1] == n_embd_gqa);
|
||||
GGML_ASSERT(wv->ne[0] == n_embd && wv->ne[1] == n_embd_gqa);
|
||||
@@ -2585,7 +2584,7 @@ bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias) {
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!fused_qkv && ml.merge_qkv && wq->type == wk->type && hparams.f_attention_scale == 0.0f) {
|
||||
if (!fused_qkv && ml.merge_qkv && wq->type == wk->type && (ignore_attn_scale || hparams.f_attention_scale == 0.0f)) {
|
||||
GGML_ASSERT(wq->ne[0] == n_embd && wq->ne[1] == n_head * n_embd_head_k);
|
||||
GGML_ASSERT(wk->ne[0] == n_embd && wk->ne[1] == n_embd_gqa);
|
||||
layer.wqk = ggml_new_tensor_2d(ctx_split, wq->type, n_embd, n_embd_head_k * (n_head + n_head_kv));
|
||||
@@ -2623,7 +2622,7 @@ bool create_tensors_helper::merge_qkv(const LLM_TN & tn, int i, int bias) {
|
||||
if (!fused_qkv) {
|
||||
if (ml.merge_qkv) {
|
||||
printf("%s: did not merge Q, K, V in layer %d because %d, %d, %d\n", __func__, i,
|
||||
wq->type == wk->type, wq->type == wv->type, hparams.f_attention_scale == 0.0f);
|
||||
wq->type == wk->type, wq->type == wv->type, (ignore_attn_scale || hparams.f_attention_scale == 0.0f));
|
||||
}
|
||||
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
|
||||
Reference in New Issue
Block a user