add hunyuan moe support for 561 (#565)

* add hunyuan moe

* Don't reshape Vcur

* Apply chat template fix from mainline PR14584
This commit is contained in:
ubergarm
2025-07-09 04:29:40 -04:00
committed by GitHub
parent 6a56d5075d
commit db49223e8c
3 changed files with 258 additions and 0 deletions

View File

@@ -111,6 +111,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_FALCON_3 = 34,
LLAMA_VOCAB_PRE_TYPE_FALCON_E = 35,
LLAMA_VOCAB_PRE_TYPE_SEED_CODER = 36, //llama.cpp lists this as 35
LLAMA_VOCAB_PRE_TYPE_HUNYUAN = 37, //llama.cpp lists this as 36
};
// note: these values should be synchronized with ggml_rope

View File

@@ -427,6 +427,7 @@ struct llm_tokenizer_bpe {
break;
case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
case LLAMA_VOCAB_PRE_TYPE_QWEN2:
case LLAMA_VOCAB_PRE_TYPE_HUNYUAN:
regex_exprs = {
// original regex from tokenizer.json
// "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"

View File

@@ -235,6 +235,7 @@ enum llm_arch {
LLM_ARCH_GRANITE,
LLM_ARCH_GRANITE_MOE,
LLM_ARCH_COHERE2,
LLM_ARCH_HUNYUAN_MOE,
LLM_ARCH_UNKNOWN,
};
@@ -291,6 +292,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_GRANITE, "granite" },
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
{ LLM_ARCH_COHERE2, "cohere2" },
{ LLM_ARCH_HUNYUAN_MOE, "hunyuan-moe" },
{ LLM_ARCH_UNKNOWN, "(unknown)" },
};
@@ -1595,6 +1597,29 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_HUNYUAN_MOE,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_UNKNOWN,
{
@@ -1638,6 +1663,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_LLAMA4,
LLM_CHAT_TEMPLATE_BITNET,
LLM_CHAT_TEMPLATE_HUNYUAN_MOE,
LLM_CHAT_TEMPLATE_UNKNOWN,
};
@@ -1675,6 +1701,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
{ "hunyuan-moe", LLM_CHAT_TEMPLATE_HUNYUAN_MOE },
{ "bitnet", LLM_CHAT_TEMPLATE_BITNET },
};
@@ -2570,6 +2597,7 @@ enum e_model {
MODEL_27B,
MODEL_17B_16E,
MODEL_17B_128E,
MODEL_80B_A13B,
};
static const size_t kiB = 1024;
@@ -5203,6 +5231,7 @@ static const char * llama_model_type_name(e_model type) {
case MODEL_27B: return "27B";
case MODEL_17B_16E: return "17Bx16E (Scout)";
case MODEL_17B_128E: return "17Bx128E (Maverick)";
case MODEL_80B_A13B: return "80B.A13B";
default: return "?B";
}
}
@@ -6037,6 +6066,17 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_EXPERT_SHARED_FEED_FORWARD_LENGTH, hparams.n_ff_shexp);
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_80B_A13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
}
@@ -6306,6 +6346,10 @@ static void llm_load_vocab(
tokenizer_pre == "seed-coder") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SEED_CODER;
vocab.tokenizer_clean_spaces = false;
} else if (
tokenizer_pre == "hunyuan") {
vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_HUNYUAN;
vocab.tokenizer_clean_spaces = false;
} else {
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
}
@@ -9164,6 +9208,47 @@ static bool llm_load_tensors(
layer.ffn_post_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_POST_NORM, "weight", i), {n_embd}, 0);
}
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
model.tok_embd = create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
model.output_norm = create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (model.output == NULL) {
model.output = create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
}
for (int i = 0; i < n_layer; ++i) {
ggml_context * ctx_layer = ctx_for_layer(i);
ggml_context * ctx_split = ctx_for_layer_split(i);
auto & layer = model.layers[i];
layer.attn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.attn_k_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
layer.attn_q_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
layer.ffn_norm = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.ffn_gate_inp = create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_down_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}, 0);
layer.ffn_gate_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
layer.ffn_up_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, hparams.n_ff_shexp}, 0);
layer.ffn_down_shexp = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {hparams.n_ff_shexp, n_embd}, 0);
}
} break;
default:
throw std::runtime_error("unknown architecture");
}
@@ -16862,6 +16947,158 @@ struct llm_build_context {
return gf;
}
struct ggml_cgraph * build_hunyuan_moe() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
const int64_t n_embd_head = hparams.n_embd_head_v;
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
GGML_ASSERT(n_embd_head == hparams.n_rot);
ggml_tensor * cur;
ggml_tensor * inpL;
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
const float kq_scale = 1.0f / sqrtf(float(n_embd_head));
ggml_tensor * inp_out_ids = build_inp_out_ids();
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
// norm
cur = llm_build_norm(ctx0, inpL, hparams, model.layers[il].attn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);
// self-attention
{
// rope freq factors for llama3; may return nullptr for llama2 and other models
struct ggml_tensor * rope_factors = build_rope_factors(il);
// compute Q and K and RoPE them
ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
cb(Qcur, "Qcur", il);
if (model.layers[il].bq) {
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
cb(Qcur, "Qcur", il);
}
ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
cb(Kcur, "Kcur", il);
if (model.layers[il].bk) {
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
cb(Kcur, "Kcur", il);
}
ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
cb(Vcur, "Vcur", il);
if (model.layers[il].bv) {
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
cb(Vcur, "Vcur", il);
}
Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].attn_k_norm, nullptr, LLM_NORM_RMS, cb, il);
cb(Kcur, "Kcur_norm", il);
Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].attn_q_norm, nullptr, LLM_NORM_RMS, cb, il);
cb(Qcur, "Qcur_norm", il);
cur = llm_build_kv(ctx0, lctx, kv_self, gf, model.layers[il].wo, model.layers[il].bo, Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1 && inp_out_ids) {
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
}
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
cur = llm_build_norm(ctx0,ffn_inp, hparams, model.layers[il].ffn_norm, NULL, LLM_NORM_RMS, cb, il);
cb(cur, "ffn_norm", il);
// feed-forward network (non-MoE)
ggml_tensor * cur_mlp = llm_build_ffn(ctx0, lctx, cur,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur_mlp, "ffn_mlp", il);
// MoE branch
ggml_tensor * cur_moe = llm_build_moe_ffn(ctx0, lctx, cur,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU,
true, // norm_topk_prob
false,
0.0,
LLM_EXPERT_GATING_FUNC_SOFTMAX,
cb,
il);
cb(cur_moe, "ffn_moe_out", il);
ggml_tensor * ffn_out = ggml_add(ctx0, cur_moe, cur_mlp);
cb(ffn_out, "ffn_out", il);
cur = ggml_add(ctx0, ffn_out, ffn_inp);
cur = lctx.cvec.apply_to(ctx0, cur, il);
cb(cur, "l_out", il);
// input for next layer
inpL = cur;
}
cur = inpL;
cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
cb(cur, "result_norm", -1);
//res->t_embd = cur;
// lm_head
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
cb(cur, "result_output", -1);
//res->t_logits = cur;
ggml_build_forward_expand(gf, cur);
return gf;
}
};
static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
@@ -17157,6 +17394,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm.build_jais();
} break;
case LLM_ARCH_HUNYUAN_MOE:
{
result = llm.build_hunyuan_moe();
} break;
default:
GGML_ABORT("fatal error");
}
@@ -20929,6 +21170,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
case LLM_ARCH_OPENELM:
case LLM_ARCH_GPTNEOX:
case LLM_ARCH_CODESHELL:
case LLM_ARCH_HUNYUAN_MOE:
return LLAMA_ROPE_TYPE_NEOX;
// all model arches should be listed explicitly here
@@ -22742,6 +22984,8 @@ static llm_chat_template llama_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_MEGREZ;
} else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
return LLM_CHAT_TEMPLATE_LLAMA4;
} else if (tmpl_contains("<|startoftext|>") && tmpl_contains("<|extra_4|>")) {
return LLM_CHAT_TEMPLATE_HUNYUAN_MOE;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
@@ -23160,6 +23404,18 @@ static int32_t llama_chat_apply_template_internal(
ss << message->content;
}
}
} else if (tmpl == LLM_CHAT_TEMPLATE_HUNYUAN_MOE) {
// tencent/Hunyuan-A13B-Instruct
for (auto message : chat) {
std::string role(message->role);
if (role == "system") {
ss << "<|startoftext|>" << message->content << "<|extra_4|>";
} else if (role == "assistant") {
ss << "<|startoftext|>" << message->content << "<|eos|>";
} else {
ss << "<|startoftext|>" << message->content << "<|extra_0|>";
}
}
} else {
// template not supported
return -1;