mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-02-10 16:30:12 +00:00
Better BF16 support on AVX2 (#175)
* Adding BF16 support for AVX2 PP performance is the same as fp16 (~153 t/s on Ryzen-5975WX), but TG is quite a bit lower (3.65 t/s vs 4.72 t/s at 8 threads). Why? * Slightly faster fp16/bf16 gemv on AVX2 It still saturates at the same lower peformance for bf16 --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -6970,6 +6970,9 @@ struct QFBase {
|
||||
using Acc = __m256;
|
||||
static inline Data load(const ggml_half * x) { return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)x)); }
|
||||
static inline Data load(const float * x) { return _mm256_loadu_ps(x); }
|
||||
static inline Data load(const ggml_bf16_t * x) {
|
||||
return _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i*)x)), 16));
|
||||
}
|
||||
static inline Acc acc(Acc prev, const Data& y, const Data& x) {
|
||||
return _mm256_fmadd_ps(y, x, prev);
|
||||
}
|
||||
@@ -7003,6 +7006,9 @@ struct QFBase {
|
||||
#endif
|
||||
static inline __m128 load128(const ggml_half * x) { return _mm_cvtph_ps(_mm_loadl_epi64((const __m128i *)x)); }
|
||||
static inline __m128 load128(const float * x) { return _mm_loadu_ps(x); }
|
||||
static inline __m128 load128(const ggml_bf16_t * x) {
|
||||
return _mm_castsi128_ps(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadl_epi64((const __m128i*)x)), 16));
|
||||
}
|
||||
};
|
||||
template <typename Float, int nrc_in> struct QFT final : public QFBase {
|
||||
constexpr static int nrc = nrc_in;
|
||||
@@ -7142,7 +7148,7 @@ void mul_mat_fX_fY_T(int n, const void * vx, size_t bx, const DataInfo& info, in
|
||||
#ifdef __AVX512F__
|
||||
constexpr int k_nx = 5;
|
||||
#else
|
||||
constexpr int k_nx = 2;
|
||||
constexpr int k_nx = nrc_y == 1 ? 4 : 2;
|
||||
#endif
|
||||
const char * cx = (const char *)vx;
|
||||
for (int ix = 0; ix < nrc_x/k_nx; ++ix) {
|
||||
@@ -7151,14 +7157,26 @@ void mul_mat_fX_fY_T(int n, const void * vx, size_t bx, const DataInfo& info, in
|
||||
int last_x = k_nx*(nrc_x/k_nx);
|
||||
if (last_x == nrc_x) return;
|
||||
int nx = nrc_x - last_x;
|
||||
#ifdef __AVX512F__
|
||||
switch (nx) {
|
||||
case 1: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 1>>(n, cx, bx, last_x, info); break;
|
||||
#ifdef __AVX512F__
|
||||
case 2: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 2>>(n, cx, bx, last_x, info); break;
|
||||
case 3: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 3>>(n, cx, bx, last_x, info); break;
|
||||
case 4: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 4>>(n, cx, bx, last_x, info); break;
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
if constexpr (nrc_y == 1) {
|
||||
switch (nx) {
|
||||
case 1: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 1>>(n, cx, bx, last_x, info); break;
|
||||
case 2: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 2>>(n, cx, bx, last_x, info); break;
|
||||
case 3: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 3>>(n, cx, bx, last_x, info); break;
|
||||
}
|
||||
} else {
|
||||
switch (nx) {
|
||||
case 1: mul_mat_Qx_Qy_MxN<QFT<FloatY, nrc_y>, QFT<FloatX, 1>>(n, cx, bx, last_x, info); break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef __AVX512BF16__
|
||||
@@ -7456,6 +7474,9 @@ bool MulMat::prepare(int typeA, int typeB, int ne00, MulMat& mm, int Ny) {
|
||||
switch (typeB) {
|
||||
#ifdef __AVX512BF16__
|
||||
case GGML_TYPE_BF16: set_mul_mat_bf16(mm); break;
|
||||
#else
|
||||
case GGML_TYPE_BF16: set_mul_mat_f<ggml_bf16_t, ggml_bf16_t>(mm); break;
|
||||
case GGML_TYPE_F32: set_mul_mat_f<ggml_bf16_t, float>(mm); break;
|
||||
#endif
|
||||
default: return false;
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user