Test transparent huge pages on Linux (#278)

* Adding ability to use THP on Linux

* Use the actual page size4 used for mmap also in munmap

* Add -thp to llama-bench

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
Kawrakow
2025-03-23 07:24:43 +01:00
committed by GitHub
parent 6028362ef6
commit dd5ebd0e3d
5 changed files with 99 additions and 13 deletions

View File

@@ -993,6 +993,10 @@ bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_pa
params.use_mmap = false;
return true;
}
if (arg == "-thp" || arg == "--transparent-huge-pages") {
params.use_thp = true;
return true;
}
if (arg == "--numa") {
CHECK_ARG
std::string value(argv[i]);
@@ -2316,6 +2320,7 @@ struct llama_model_params llama_model_params_from_gpt_params(const gpt_params &
mparams.use_mlock = params.use_mlock;
mparams.check_tensors = params.check_tensors;
mparams.repack_tensors = params.repack_tensors;
mparams.use_thp = params.use_thp;
if (params.kv_overrides.empty()) {
mparams.kv_overrides = NULL;
} else {
@@ -3371,6 +3376,7 @@ void yaml_dump_non_result_info(FILE * stream, const gpt_params & params, const l
fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", sparams.n_probs);
fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
fprintf(stream, "repack: %s # default: false\n", params.repack_tensors ? "true" : "false");
fprintf(stream, "use_thp: %s # default: false\n", params.use_thp ? "true" : "false");
fprintf(stream, "penalize_nl: %s # default: false\n", sparams.penalize_nl ? "true" : "false");
fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);

View File

@@ -194,6 +194,7 @@ struct gpt_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
bool repack_tensors = false; // repack tensors if interleaved variant is available
bool use_thp = false; // use transparent huge pages (linux only)
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V

View File

@@ -248,6 +248,7 @@ struct cmd_params {
bool warmup;
bool repack = false;
bool fmoe = false;
bool use_thp = false;
output_formats output_format;
output_formats output_format_stderr;
};
@@ -281,6 +282,7 @@ static const cmd_params cmd_params_defaults = {
/* verbose */ false,
/* warmup */ true,
/* repack */ false,
/* use_thp */ false,
/* fmoe */ false,
/* output_format */ MARKDOWN,
/* output_format_stderr */ NONE,
@@ -320,6 +322,7 @@ static void print_usage(int /* argc */, char ** argv) {
printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
printf(" -w, --warmup <0|1> (default: %s)\n", cmd_params_defaults.warmup ? "1" : "0");
printf(" -rtr, --run-time-repack <0|1> (default: %s)\n", cmd_params_defaults.repack ? "1" : "0");
printf(" -thp, --transparent-huge-pages <0|1> (default: %s)\n", cmd_params_defaults.use_thp? "1" : "0");
printf(" -ot, --override-tensor pattern (default: none)\n");
printf(" -fmoe, --fused-moe <0|1> (default: %s)\n", cmd_params_defaults.fmoe? "1" : "0");
printf("\n");
@@ -691,6 +694,12 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
break;
}
params.repack = std::stoi(argv[i]);
} else if (arg == "-thp" || arg == "--transparent-huge-pages") {
if (++i >= argc) {
invalid_param = true;
break;
}
params.use_thp = std::stoi(argv[i]);
} else if (arg == "-fmoe" || arg == "--fused-moe") {
if (++i >= argc) {
invalid_param = true;
@@ -781,6 +790,7 @@ struct cmd_params_instance {
bool embeddings;
bool repack = false;
bool fmoe = false;
bool use_thp = false;
const llama_model_tensor_buft_override* buft_overrides;
llama_model_params to_llama_mparams() const {
@@ -795,6 +805,7 @@ struct cmd_params_instance {
mparams.tensor_split = tensor_split.data();
mparams.use_mmap = use_mmap;
mparams.repack_tensors = repack;
mparams.use_thp = use_thp;
mparams.tensor_buft_overrides = buft_overrides;
return mparams;
@@ -808,6 +819,7 @@ struct cmd_params_instance {
main_gpu == other.main_gpu &&
use_mmap == other.use_mmap &&
repack == other.repack &&
use_thp == other.use_thp &&
tensor_split == other.tensor_split;
}
@@ -882,6 +894,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .use_thp = */ params.use_thp,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
@@ -915,6 +928,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .use_thp = */ params.use_thp,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
@@ -948,6 +962,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .use_thp = */ params.use_thp,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
@@ -981,6 +996,7 @@ static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_param
/* .embeddings = */ embd,
/* .repack = */ params.repack,
/* .fmoe = */ params.fmoe,
/* .use_thp = */ params.use_thp,
/* .buft_overrides=*/ params.buft_overrides.data(),
};
instances.push_back(instance);
@@ -1025,6 +1041,7 @@ struct test {
bool embeddings;
bool repack = false;
bool fmoe = false;
bool use_thp = false;
int n_prompt;
int n_gen;
std::string test_time;
@@ -1058,6 +1075,7 @@ struct test {
embeddings = inst.embeddings;
repack = inst.repack;
fmoe = inst.fmoe;
use_thp = inst.use_thp;
n_prompt = inst.n_prompt;
n_gen = inst.n_gen;
test_kind = inst.test_kind;
@@ -1148,7 +1166,7 @@ struct test {
"n_threads", "type_k", "type_v",
"n_gpu_layers", "split_mode",
"main_gpu", "no_kv_offload", "flash_attn", "mla_attn", "attn_max_batch", "ser",
"tensor_split", "use_mmap", "embeddings", "repack", "fused_moe",
"tensor_split", "use_mmap", "embeddings", "repack", "fused_moe", "use_thp",
"n_prompt", "n_gen", "test_time",
"avg_ns", "stddev_ns",
"avg_ts", "stddev_ts", "test",
@@ -1169,7 +1187,7 @@ struct test {
}
if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
field == "flash_attn" || field == "use_mmap" || field == "embeddings" || field == "repack" ||
field == "flash_attn" || field == "use_mmap" || field == "embeddings" || field == "repack" || field == "use_thp" ||
field == "fused_moe") {
return BOOL;
}
@@ -1211,7 +1229,8 @@ struct test {
std::to_string(n_gpu_layers), split_mode_str(split_mode),
std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
std::to_string(mla_attn), std::to_string(attn_max_batch), ser_to_string(ser),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings), std::to_string(repack), std::to_string(fmoe),
tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
std::to_string(repack), std::to_string(fmoe), std::to_string(use_thp),
std::to_string(n_prompt), std::to_string(n_gen), test_time,
std::to_string(avg_ns()), std::to_string(stdev_ns()),
std::to_string(avg_ts()), std::to_string(stdev_ts()),
@@ -1389,6 +1408,9 @@ struct markdown_printer : public printer {
if (field == "repack") {
return 3;
}
if (field == "use_thp") {
return 3;
}
if (field == "fused_moe") {
return 4;
}
@@ -1435,6 +1457,9 @@ struct markdown_printer : public printer {
if (field == "repack") {
return "rtr";
}
if (field == "use_thp") {
return "thp";
}
if (field == "fused_moe") {
return "fmoe";
}
@@ -1505,6 +1530,9 @@ struct markdown_printer : public printer {
if (params.repack != cmd_params_defaults.repack) {
fields.emplace_back("repack");
}
if (params.use_thp != cmd_params_defaults.use_thp) {
fields.emplace_back("use_thp");
}
if (params.fmoe != cmd_params_defaults.fmoe) {
fields.emplace_back("fused_moe");
}

View File

@@ -345,6 +345,7 @@ extern "C" {
bool use_mlock; // force system to keep model in RAM
bool check_tensors; // validate model tensor data
bool repack_tensors;// repack if available
bool use_thp; // uase transparent huge pages (linux only)
};
// NOTE: changing the default values of parameters marked as [EXPERIMENTAL] may cause crashes or incorrect results in certain configurations

View File

@@ -1827,6 +1827,7 @@ using llama_files = std::vector<std::unique_ptr<llama_file>>;
struct llama_mmap {
void * addr;
size_t size;
size_t mapped_page_size = 0;
llama_mmap(const llama_mmap &) = delete;
@@ -1836,7 +1837,7 @@ struct llama_mmap {
// list of mapped fragments (first_offset, last_offset)
std::vector<std::pair<size_t, size_t>> mapped_fragments;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false, [[maybe_unused]] bool use_thp = false) {
size = file->size;
int fd = fileno(file->fp);
int flags = MAP_SHARED;
@@ -1849,6 +1850,29 @@ struct llama_mmap {
strerror(errno));
}
if (prefetch) { flags |= MAP_POPULATE; }
if (use_thp) {
size_t huge = get_default_huge_page_size();
auto size = huge*((file->size + huge - 1)/huge);
addr = mmap(nullptr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS | MAP_HUGETLB, -1, 0);
if (addr != MAP_FAILED) {
printf("%s: using THP with page size %zu MiB ", __func__, huge/(1024*1024));
fflush(stdout);
size_t tot = 0;
while (tot < file->size) {
auto n_read = pread(fd, static_cast<char*>(addr) + tot, file->size - tot, tot);
if (n_read < 0) throw std::runtime_error(format("Reading into mapped huge pages failed at %zu (%s)", tot, strerror(errno)));
printf("."); fflush(stdout);
tot += n_read;
}
printf(" done\n");
mapped_fragments.emplace_back(0, file->size);
mapped_page_size = huge;
return;
}
else {
fprintf(stderr, "%s: mmap with huge page size %zu MiB failed (%s)\n", __func__, huge/(1024*1024), strerror(errno));
}
}
#endif
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
if (addr == MAP_FAILED) { // NOLINT
@@ -1893,7 +1917,7 @@ struct llama_mmap {
void unmap_fragment(size_t first, size_t last) {
// note: this function must not be called multiple times with overlapping ranges
// otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
int page_size = sysconf(_SC_PAGESIZE);
int page_size = mapped_page_size > 0 ? mapped_page_size : sysconf(_SC_PAGESIZE);
align_range(&first, &last, page_size);
size_t len = last - first;
@@ -1935,6 +1959,28 @@ struct llama_mmap {
mapped_fragments = std::move(new_mapped_fragments);
}
#ifdef __linux__
static int get_default_huge_page_size() {
int pg_size = 2048;
std::ifstream in("/proc/meminfo");
if (in) {
std::string line;
while (true) {
std::getline(in, line);
if (in.fail()) break;
if (auto pos = line.find("Hugepagesize:"); pos != std::string::npos) {
std::istringstream str(line.data() + pos + 13);
int aux;
str >> aux;
if (!str.fail()) pg_size = aux;
break;
}
}
}
return pg_size * 1024;
}
#endif
~llama_mmap() {
for (const auto & frag : mapped_fragments) {
if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
@@ -1945,7 +1991,7 @@ struct llama_mmap {
#elif defined(_WIN32)
static constexpr bool SUPPORTED = true;
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false, [[maybe_unused]] bool use_thp = false) {
GGML_UNUSED(numa);
size = file->size;
@@ -2007,10 +2053,11 @@ struct llama_mmap {
#else
static constexpr bool SUPPORTED = false;
llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false, bool use_thp = false) {
GGML_UNUSED(file);
GGML_UNUSED(prefetch);
GGML_UNUSED(numa);
GGML_UNUSED(use_thp);
throw std::runtime_error("mmap not supported");
}
@@ -3842,6 +3889,7 @@ struct llama_model_loader {
bool use_mmap = false;
bool check_tensors;
bool repack_tensors = false;
bool use_thp = false;
llama_files files;
llama_ftype ftype;
@@ -3876,7 +3924,7 @@ struct llama_model_loader {
std::string arch_name;
LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, bool repack_tensors,
llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, bool repack_tensors, bool use_thp,
const llama_model_kv_override * param_overrides_p,
const llama_model_tensor_buft_override * param_tensor_buft_overrides_p) {
int trace = 0;
@@ -4140,6 +4188,7 @@ struct llama_model_loader {
this->use_mmap = use_mmap;
this->check_tensors = check_tensors;
this->repack_tensors = repack_tensors;
this->use_thp = use_thp;
}
~llama_model_loader() {
@@ -4453,12 +4502,12 @@ struct llama_model_loader {
}
}
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr, bool use_thp = false) {
if (use_mmap) {
mappings.reserve(files.size());
mmaps_used.reserve(files.size());
for (const auto & file : files) {
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa(), use_thp));
mmaps_used.emplace_back(mapping->size, 0);
if (mlock_mmaps) {
std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
@@ -8077,7 +8126,7 @@ static bool llm_load_tensors(
ml.done_getting_tensors();
ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr, ml.use_thp);
model.mappings.reserve(ml.mappings.size());
// create the backend buffers
@@ -8410,7 +8459,7 @@ static bool llm_load_tensors(
static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
try {
llama_model_loader ml(fname, params.use_mmap, params.check_tensors,
params.repack_tensors, params.kv_overrides, params.tensor_buft_overrides);
params.repack_tensors, params.use_thp, params.kv_overrides, params.tensor_buft_overrides);
model.hparams.vocab_only = params.vocab_only;
@@ -17494,7 +17543,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
kv_overrides = v->data();
}
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, /* repack_tensors */ false, kv_overrides, nullptr);
llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, /* repack_tensors */ false, /* use_thp */ false, kv_overrides, nullptr);
ml.init_mappings(false); // no prefetching
llama_model model;
@@ -18318,6 +18367,7 @@ struct llama_model_params llama_model_default_params() {
/*.use_mlock =*/ false,
/*.check_tensors =*/ false,
/*.repack_tensors =*/ false,
/*.use_thp =*/ false,
};
#ifdef GGML_USE_METAL