mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
Add support for bitnet2b_2501 model (#337)
* add support for bitnet2b_2501 model * Fixes * Support both model names --------- Co-authored-by: potassiummmm <zhou.hansong@outlook.com>
This commit is contained in:
@@ -1598,6 +1598,7 @@ class LlamaModel(Model):
|
||||
|
||||
|
||||
@Model.register("BitnetForCausalLM")
|
||||
@Model.register("BitNetForCausalLM")
|
||||
class BitnetModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.BITNET
|
||||
|
||||
|
||||
@@ -219,6 +219,7 @@ class MODEL_ARCH(IntEnum):
|
||||
DEEPSEEK2 = auto()
|
||||
CHATGLM = auto()
|
||||
BITNET = auto()
|
||||
BITNET_25 = auto()
|
||||
T5 = auto()
|
||||
T5ENCODER = auto()
|
||||
JAIS = auto()
|
||||
@@ -351,6 +352,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||
MODEL_ARCH.DEEPSEEK2: "deepseek2",
|
||||
MODEL_ARCH.CHATGLM: "chatglm",
|
||||
MODEL_ARCH.BITNET: "bitnet",
|
||||
MODEL_ARCH.BITNET_25: "bitnet-25",
|
||||
MODEL_ARCH.T5: "t5",
|
||||
MODEL_ARCH.T5ENCODER: "t5encoder",
|
||||
MODEL_ARCH.JAIS: "jais",
|
||||
@@ -1019,6 +1021,28 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||
MODEL_TENSOR.ATTN_SUB_NORM,
|
||||
MODEL_TENSOR.FFN_SUB_NORM,
|
||||
],
|
||||
MODEL_ARCH.BITNET_25: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ROPE_FREQS,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
MODEL_TENSOR.ATTN_SUB_NORM,
|
||||
MODEL_TENSOR.FFN_SUB_NORM,
|
||||
],
|
||||
MODEL_ARCH.T5: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
|
||||
@@ -131,6 +131,7 @@ class TensorNameMap:
|
||||
"model.layers.{bid}.self_attn.qkv_proj", # phi3
|
||||
"encoder.layers.{bid}.self_attention.query_key_value", # chatglm
|
||||
"transformer.layers.{bid}.attn.qkv_proj", # openelm
|
||||
"layers.{bid}.attention.wqkv",
|
||||
),
|
||||
|
||||
# Attention query
|
||||
@@ -464,10 +465,14 @@ class TensorNameMap:
|
||||
|
||||
MODEL_TENSOR.ATTN_SUB_NORM: (
|
||||
"model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
|
||||
"layers.{bid}.attention.attn_sub_norm", # bitnet
|
||||
"model.layers.{bid}.self_attn.attn_sub_norm",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_SUB_NORM: (
|
||||
"model.layers.{bid}.mlp.ffn_layernorm", # bitnet
|
||||
"layers.{bid}.feed_forward.ffn_sub_norm", # bitnet
|
||||
"model.layers.{bid}.mlp.ffn_sub_norm",
|
||||
),
|
||||
|
||||
MODEL_TENSOR.DEC_ATTN_NORM: (
|
||||
|
||||
301
src/llama.cpp
301
src/llama.cpp
@@ -223,6 +223,7 @@ enum llm_arch {
|
||||
LLM_ARCH_DEEPSEEK2,
|
||||
LLM_ARCH_CHATGLM,
|
||||
LLM_ARCH_BITNET,
|
||||
LLM_ARCH_BITNET_25,
|
||||
LLM_ARCH_T5,
|
||||
LLM_ARCH_T5ENCODER,
|
||||
LLM_ARCH_JAIS,
|
||||
@@ -272,6 +273,7 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
||||
{ LLM_ARCH_DEEPSEEK2, "deepseek2" },
|
||||
{ LLM_ARCH_CHATGLM, "chatglm" },
|
||||
{ LLM_ARCH_BITNET, "bitnet" },
|
||||
{ LLM_ARCH_BITNET_25, "bitnet-25" },
|
||||
{ LLM_ARCH_T5, "t5" },
|
||||
{ LLM_ARCH_T5ENCODER, "t5encoder" },
|
||||
{ LLM_ARCH_JAIS, "jais" },
|
||||
@@ -1323,6 +1325,34 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||
{ LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_BITNET_25,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
||||
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
||||
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
||||
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
||||
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
||||
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
||||
{ LLM_TENSOR_ATTN_SUB_NORM, "blk.%d.attn_sub_norm" },
|
||||
{ LLM_TENSOR_FFN_SUB_NORM, "blk.%d.ffn_sub_norm" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_T5,
|
||||
{
|
||||
@@ -1468,6 +1498,7 @@ enum llm_chat_template {
|
||||
LLM_CHAT_TEMPLATE_GIGACHAT,
|
||||
LLM_CHAT_TEMPLATE_MEGREZ,
|
||||
LLM_CHAT_TEMPLATE_LLAMA4,
|
||||
LLM_CHAT_TEMPLATE_BITNET,
|
||||
LLM_CHAT_TEMPLATE_UNKNOWN,
|
||||
};
|
||||
|
||||
@@ -1504,6 +1535,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
|
||||
{ "gigachat", LLM_CHAT_TEMPLATE_GIGACHAT },
|
||||
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
|
||||
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
|
||||
{ "bitnet", LLM_CHAT_TEMPLATE_BITNET },
|
||||
};
|
||||
|
||||
|
||||
@@ -5120,7 +5152,7 @@ static void llm_load_hparams(
|
||||
|
||||
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
||||
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
||||
if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON || model.arch == LLM_ARCH_BITNET_25) {
|
||||
if (hparams.n_rot != hparams.n_embd_head_k) {
|
||||
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
||||
}
|
||||
@@ -5690,6 +5722,15 @@ static void llm_load_hparams(
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_BITNET_25:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
|
||||
switch (hparams.n_layer) {
|
||||
case 30: model.type = e_model::MODEL_2B; break; // bitnet2b_2501
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_T5:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
@@ -8107,6 +8148,90 @@ static bool llm_load_tensors(
|
||||
layer.ffn_up_scale = create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "scale", i), {1}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_BITNET_25:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
// if output is NULL, init from the input tok embed
|
||||
if (model.output == NULL) {
|
||||
model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.attn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_SUB_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_sub_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_SUB_NORM, "weight", i), {n_ff});
|
||||
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
||||
|
||||
// optional bias tensors
|
||||
layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
|
||||
layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
||||
|
||||
if (n_expert == 0) {
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
|
||||
// optional MLP bias
|
||||
layer.ffn_gate_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
} else {
|
||||
layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
|
||||
|
||||
layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
||||
if (layer.ffn_gate_exps) {
|
||||
layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
|
||||
layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
|
||||
} else {
|
||||
// merge split expert into a single tensor for compatibility with older models
|
||||
// requires disabling mmap
|
||||
use_mmap_buffer = false;
|
||||
|
||||
ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
|
||||
ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
|
||||
ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
|
||||
|
||||
layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
|
||||
layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
|
||||
layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
|
||||
|
||||
ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
|
||||
ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
|
||||
ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
|
||||
|
||||
for (uint32_t x = 0; x < n_expert; ++x) {
|
||||
// the individual experts are loaded into a view of the merged tensor
|
||||
ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
|
||||
ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
|
||||
ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_T5:
|
||||
{
|
||||
const auto n_rel_attn_bkts = hparams.n_rel_attn_bkts;
|
||||
@@ -14731,6 +14856,156 @@ struct llm_build_context {
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_bitnet_25() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
// mutable variable, needed during the last layer of the computation to skip unused tokens
|
||||
int32_t n_tokens = this->n_tokens;
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = build_inp_pos();
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// rope freq factors for llama3; may return nullptr for llama2 and other models
|
||||
struct ggml_tensor * rope_factors = build_rope_factors(il);
|
||||
// printf("%f\n\n\n\n",((float*)rope_factors->data)[1]);
|
||||
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_ext(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
||||
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
||||
NULL, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.layers[il].attn_sub_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_sub_norm", il);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wo, cur);
|
||||
if (model.layers[il].wo_scale) {
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].wo_scale);
|
||||
}
|
||||
if (model.layers[il].bo) {
|
||||
cur = ggml_add(ctx0, cur, model.layers[il].bo);
|
||||
}
|
||||
cb(cur, "attn_o_out", il);
|
||||
}
|
||||
|
||||
if (il == n_layer - 1) {
|
||||
// skip computing output for unused tokens
|
||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||
// n_tokens = n_outputs;
|
||||
cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
||||
inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, lctx, cur,
|
||||
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up_scale,
|
||||
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate_scale,
|
||||
NULL, NULL, NULL,
|
||||
NULL,
|
||||
LLM_FFN_RELU_SQR, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.layers[il].ffn_sub_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_sub_norm", il);
|
||||
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.layers[il].ffn_down, cur);
|
||||
if (model.layers[il].ffn_down_scale) {
|
||||
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_down_scale);
|
||||
}
|
||||
cb(cur, "ffn_down", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = llm_build_lora_mm(lctx, ctx0, model.tok_embd, cur);
|
||||
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_t5_encoder() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
||||
|
||||
@@ -15527,6 +15802,10 @@ static struct ggml_cgraph * llama_build_graph(
|
||||
{
|
||||
result = llm.build_bitnet();
|
||||
} break;
|
||||
case LLM_ARCH_BITNET_25:
|
||||
{
|
||||
result = llm.build_bitnet_25();
|
||||
} break;
|
||||
case LLM_ARCH_T5:
|
||||
{
|
||||
if (lctx.is_encoding) {
|
||||
@@ -19210,6 +19489,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
||||
case LLM_ARCH_NOMIC_BERT:
|
||||
case LLM_ARCH_STABLELM:
|
||||
case LLM_ARCH_BITNET:
|
||||
case LLM_ARCH_BITNET_25:
|
||||
case LLM_ARCH_QWEN:
|
||||
case LLM_ARCH_QWEN2:
|
||||
case LLM_ARCH_QWEN2MOE:
|
||||
@@ -21403,6 +21683,25 @@ static int32_t llama_chat_apply_template_internal(
|
||||
if (add_ass) {
|
||||
ss << "<|header_start|>assistant<|header_end|>\n\n";
|
||||
}
|
||||
} else if (tmpl == LLM_CHAT_TEMPLATE_BITNET) {
|
||||
// bitnet-25
|
||||
std::string system_prompt = "";
|
||||
for (auto message : chat) {
|
||||
std::string role(message->role);
|
||||
if (role == "system") {
|
||||
ss << "System: ";
|
||||
ss << message->content;
|
||||
} else if (role == "user") {
|
||||
ss << "User: ";
|
||||
if (!system_prompt.empty()) {
|
||||
ss << system_prompt;
|
||||
system_prompt = "";
|
||||
}
|
||||
ss << message->content << "<|eot_id|>Assistant: ";
|
||||
} else {
|
||||
ss << message->content;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// template not supported
|
||||
return -1;
|
||||
|
||||
Reference in New Issue
Block a user