mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 09:09:50 +00:00
Even more fused ops (#868)
* Fuse Q, K, V gemv+add * More gemv+add fusing * Faster copy when tensors are contiguous Relevant for storing data into the KV cache. I see ~1% speedup for fast models (Ling-mini-2.0, gpt-oss-20b, etc.) * Cleanup * Make sure the bias really is 1 row to use fusion --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
This commit is contained in:
@@ -2078,9 +2078,43 @@ static int ggml_cuda_mul_mat_q(ggml_backend_cuda_context & ctx, const ggml_tenso
|
||||
src0->type, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
ggml_cuda_op_mul_mat_vec_q(ctx, src0, src1, dst, (const char *)src0->data, nullptr, src1_quantized.get(), (float *)dst->data,
|
||||
0, src0->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
// The code below handles the case when Q, K, V have a bias applied after the resepctive matrix multiplication.
|
||||
// In that case the graph contains mul_mat(Q) -> mul_mat(K) -> mul_mat(V) -> add(Q) -> add(K) -> add(V)
|
||||
if (cgraph && node_n + 5 < cgraph->n_nodes &&
|
||||
cgraph->nodes[node_n+1]->op == GGML_OP_MUL_MAT &&
|
||||
cgraph->nodes[node_n+2]->op == GGML_OP_MUL_MAT &&
|
||||
ggml_is_quantized(cgraph->nodes[node_n+1]->src[0]->type) &&
|
||||
ggml_is_quantized(cgraph->nodes[node_n+2]->src[0]->type) &&
|
||||
cgraph->nodes[node_n+3]->op == GGML_OP_ADD &&
|
||||
cgraph->nodes[node_n+4]->op == GGML_OP_ADD &&
|
||||
cgraph->nodes[node_n+5]->op == GGML_OP_ADD &&
|
||||
cgraph->nodes[node_n+0] == cgraph->nodes[node_n+3]->src[0] &&
|
||||
cgraph->nodes[node_n+1] == cgraph->nodes[node_n+4]->src[0] &&
|
||||
cgraph->nodes[node_n+2] == cgraph->nodes[node_n+5]->src[0]) {
|
||||
for (int i = 0; i < 3; ++i) {
|
||||
auto src0_i = cgraph->nodes[node_n+i]->src[0];
|
||||
ggml_cuda_op_mul_mat_vec_q_biased(ctx, src0_i, src1, cgraph->nodes[node_n+i], cgraph->nodes[node_n+i+3]->src[1],
|
||||
(const char *)src0_i->data, nullptr, src1_quantized.get(), (float *)cgraph->nodes[node_n+i]->data,
|
||||
0, src0_i->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
node_n += 5;
|
||||
} else if (cgraph && node_n + 1 < cgraph->n_nodes &&
|
||||
cgraph->nodes[node_n+1]->op == GGML_OP_ADD &&
|
||||
dst == cgraph->nodes[node_n+1]->src[0] &&
|
||||
dst->ne[0] == cgraph->nodes[node_n+1]->src[1]->ne[0] &&
|
||||
cgraph->nodes[node_n+1]->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_nrows(cgraph->nodes[node_n+1]->src[1]) == 1) {
|
||||
// We have a bias applied after the matrix multiplication and we can fuse it
|
||||
ggml_cuda_op_mul_mat_vec_q_biased(ctx, dst->src[0], src1, cgraph->nodes[node_n+1], cgraph->nodes[node_n+1]->src[1],
|
||||
(const char *)dst->src[0]->data, nullptr, src1_quantized.get(), (float *)cgraph->nodes[node_n+1]->data,
|
||||
0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
++node_n;
|
||||
} else {
|
||||
ggml_cuda_op_mul_mat_vec_q(ctx, src0, src1, dst, (const char *)src0->data, nullptr, src1_quantized.get(), (float *)dst->data,
|
||||
0, src0->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
} else {
|
||||
quantize_mmq_q8_1_cuda((const float *)src1->data, src1_quantized.get(), src1->ne[0], src1->ne[1], 1, ne10_padded, src0->type, stream);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
@@ -2101,8 +2135,21 @@ static int ggml_cuda_mul_mat_q(ggml_backend_cuda_context & ctx, const ggml_tenso
|
||||
if (dst->op != GGML_OP_MUL_MAT || dst->src[1] != src1 || !ggml_is_quantized(dst->src[0]->type)) break;
|
||||
if (!is_gemv && mmq_get_q8_1_ds_layout(src0->type) != mmq_get_q8_1_ds_layout(dst->src[0]->type)) break;
|
||||
if (is_gemv) {
|
||||
ggml_cuda_op_mul_mat_vec_q(ctx, dst->src[0], src1, dst, (const char *)dst->src[0]->data, nullptr, src1_quantized.get(),
|
||||
(float *)dst->data, 0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
if (node_n + 1 < cgraph->n_nodes &&
|
||||
cgraph->nodes[node_n+1]->op == GGML_OP_ADD &&
|
||||
dst == cgraph->nodes[node_n+1]->src[0] &&
|
||||
dst->ne[0] == cgraph->nodes[node_n+1]->src[1]->ne[0] &&
|
||||
cgraph->nodes[node_n+1]->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_nrows(cgraph->nodes[node_n+1]->src[1]) == 1) {
|
||||
// We have a bias applied after the matrix multiplication and we can fuse it
|
||||
ggml_cuda_op_mul_mat_vec_q_biased(ctx, dst->src[0], src1, cgraph->nodes[node_n+1], cgraph->nodes[node_n+1]->src[1],
|
||||
(const char *)dst->src[0]->data, nullptr, src1_quantized.get(), (float *)cgraph->nodes[node_n+1]->data,
|
||||
0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
++node_n;
|
||||
} else {
|
||||
ggml_cuda_op_mul_mat_vec_q(ctx, dst->src[0], src1, dst, (const char *)dst->src[0]->data, nullptr, src1_quantized.get(),
|
||||
(float *)dst->data, 0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
}
|
||||
} else {
|
||||
ggml_cuda_op_mul_mat_q(ctx, dst->src[0], src1, dst, (const char *)dst->src[0]->data, nullptr, src1_quantized.get(),
|
||||
(float *)dst->data, 0, dst->src[0]->ne[1], src1->ne[1], ne10_padded, stream);
|
||||
|
||||
@@ -313,7 +313,25 @@ void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_repeat>>(&aux_dst, &aux_src, &aux_dst, nullptr, dst->src[0]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
static __global__ void k_fast_add(int64_t ne0, int64_t nelem, const float * x, const float * y, float * z) {
|
||||
int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
if (i >= nelem) {
|
||||
return;
|
||||
}
|
||||
z[i] = x[i] + y[i % ne0];
|
||||
}
|
||||
|
||||
void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
if (ggml_nrows(dst->src[1]) == 1 && dst->src[0]->ne[0] == dst->src[1]->ne[0] &&
|
||||
dst->type == GGML_TYPE_F32 && dst->src[0]->type == GGML_TYPE_F32 && dst->src[1]->type == GGML_TYPE_F32 &&
|
||||
ggml_are_same_shape(dst, dst->src[0]) && ggml_is_contiguous(dst)) {
|
||||
constexpr int kBlockSize = 256;
|
||||
auto nelem = ggml_nelements(dst);
|
||||
int nblocks = (nelem + kBlockSize - 1)/kBlockSize;
|
||||
k_fast_add<<<nblocks, kBlockSize, 0, ctx.stream()>>>(dst->ne[0], nelem,
|
||||
(const float *)dst->src[0]->data, (const float *)dst->src[1]->data, (float *)dst->data);
|
||||
return;
|
||||
}
|
||||
ggml_cuda_op_bin_bcast<bin_bcast_cuda<op_add>>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream());
|
||||
}
|
||||
|
||||
|
||||
@@ -38,6 +38,25 @@ static __global__ void cpy_flt(const char * cx, char * cdst_direct, const int ne
|
||||
cpy_1(cx + x_offset, cdst + dst_offset);
|
||||
}
|
||||
|
||||
template <typename src_t, typename dst_t>
|
||||
static __global__ void cpy_flt_contiguous(const char * cx, char * cdst_direct, const int ne,
|
||||
char ** cdst_indirect, int graph_cpynode_index) {
|
||||
const int64_t i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto dst = (cdst_indirect != nullptr) ? (dst_t *)cdst_indirect[graph_cpynode_index] : (dst_t *)cdst_direct;
|
||||
auto src = (const src_t *)cx;
|
||||
|
||||
if constexpr (std::is_same_v<dst_t, nv_bfloat16>) {
|
||||
dst[i] = __float2bfloat16(src[i]);
|
||||
} else {
|
||||
dst[i] = (dst_t)src[i];
|
||||
}
|
||||
}
|
||||
|
||||
static __device__ void cpy_blck_q8_0_f32(const char * cxi, char * cdsti) {
|
||||
float * cdstf = (float *)(cdsti);
|
||||
|
||||
@@ -163,6 +182,16 @@ static void ggml_cpy_flt_cuda(
|
||||
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
template<typename src_t, typename dst_t>
|
||||
static void ggml_cpy_flt_contiguous_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
|
||||
|
||||
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
|
||||
cpy_flt_contiguous<src_t, dst_t><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
|
||||
(cx, cdst, ne, cdst_indirect, graph_cpynode_index++);
|
||||
}
|
||||
|
||||
static void ggml_cpy_f32_q8_0_cuda(
|
||||
const char * cx, char * cdst, const int ne,
|
||||
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
|
||||
@@ -404,6 +433,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
char * src0_ddc = (char *) src0->data;
|
||||
char * src1_ddc = (char *) src1->data;
|
||||
|
||||
bool fast_cpy = ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_are_same_shape(src0, src1);
|
||||
|
||||
char ** dest_ptrs_d = nullptr;
|
||||
int graph_cpynode_index = -1;
|
||||
#if defined(GGML_CUDA_USE_GRAPHS) || defined(GGML_HIP_GRAPHS) || defined(GGML_MUSA_GRAPHS)
|
||||
@@ -429,11 +460,23 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
|
||||
}
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
if (fast_cpy) {
|
||||
ggml_cpy_flt_contiguous_cuda<float, float>(src0_ddc, src1_ddc, ne, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, float> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
|
||||
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
if (fast_cpy) {
|
||||
ggml_cpy_flt_contiguous_cuda<float, nv_bfloat16>(src0_ddc, src1_ddc, ne, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, nv_bfloat16> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
if (fast_cpy) {
|
||||
ggml_cpy_flt_contiguous_cuda<float, half>(src0_ddc, src1_ddc, ne, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else {
|
||||
ggml_cpy_flt_cuda<float, half> (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
ggml_cpy_f32_q8_0_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
|
||||
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
|
||||
@@ -505,6 +548,7 @@ void ggml_cuda_dup(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
|
||||
}
|
||||
|
||||
void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
bool fast_cpy = ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_are_same_shape(src0, src1);
|
||||
if (src0->type == src1->type && ggml_is_contiguous(src0) && ggml_is_contiguous(src1)) {
|
||||
// Prioritize CUDA graph compatibility over direct memory copy optimization.
|
||||
// Using copy kernels here maintains graph indirection support, preventing performance regression from disabled CUDA graphs.
|
||||
@@ -514,11 +558,11 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
|
||||
return nullptr;
|
||||
}
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
|
||||
return (void*) cpy_flt<cpy_1_flt<float, float>>;
|
||||
return fast_cpy ? (void *)cpy_flt_contiguous<float, float> : (void*) cpy_flt<cpy_1_flt<float, float>>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
|
||||
return (void*) cpy_flt<cpy_1_flt<float, nv_bfloat16>>;
|
||||
return fast_cpy ? (void *)cpy_flt_contiguous<float, nv_bfloat16> : (void*) cpy_flt<cpy_1_flt<float, nv_bfloat16>>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
|
||||
return (void*) cpy_flt<cpy_1_flt<float, half>>;
|
||||
return fast_cpy ? (void *)cpy_flt_contiguous<float, half> : (void*) cpy_flt<cpy_1_flt<float, half>>;
|
||||
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
|
||||
return (void*) cpy_f32_q<cpy_blck_f32_q8_0, QK8_0>;
|
||||
} else if (src0->type == GGML_TYPE_Q8_0 && src1->type == GGML_TYPE_F32) {
|
||||
|
||||
@@ -168,9 +168,10 @@ void ggml_cuda_op_mul_mat_vec_q_3D(
|
||||
GGML_UNUSED(src1_ddf_i);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q(
|
||||
void ggml_cuda_op_mul_mat_vec_q_biased(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * bias,
|
||||
const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||
|
||||
@@ -180,14 +181,37 @@ void ggml_cuda_op_mul_mat_vec_q(
|
||||
|
||||
const int64_t ne0 = dst->ne[0];
|
||||
|
||||
if (bias) {
|
||||
if (bias->ne[0] != ne0) {
|
||||
printf("Oops: bias %s is %ld x %ld x %ld x %ld, dst %s is %ld x %ld x %ld x %ld\n",
|
||||
bias->name, bias->ne[0], bias->ne[1], bias->ne[2], bias->ne[3],
|
||||
dst->name, dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3]);
|
||||
}
|
||||
GGML_ASSERT(bias->ne[0] == ne0);
|
||||
GGML_ASSERT(bias->type == GGML_TYPE_F32);
|
||||
if (ggml_nrows(bias) != 1) {
|
||||
printf("Oops: bias %s is %ld x %ld x %ld x %ld\n", bias->name, bias->ne[0], bias->ne[1], bias->ne[2], bias->ne[3]);
|
||||
}
|
||||
GGML_ASSERT(ggml_nrows(bias) == 1);
|
||||
}
|
||||
|
||||
ggml_cuda_op_mul_mat_vec_q_impl(ctx, src0->type,
|
||||
ne00, ne0, 1, 0, 0, 0, 0, 0,
|
||||
src0_dd_i, nullptr, src1_ddq_i, dst_dd_i, nullptr, nullptr, nullptr,
|
||||
src0_dd_i, nullptr, src1_ddq_i, dst_dd_i, nullptr, bias ? bias->data : nullptr, nullptr,
|
||||
row_low, row_high, src1_ncols,
|
||||
src1_padded_row_size, GGML_UNARY_OP_COUNT, stream);
|
||||
|
||||
GGML_UNUSED(src1_ddf_i);
|
||||
}
|
||||
void ggml_cuda_op_mul_mat_vec_q(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
||||
ggml_cuda_op_mul_mat_vec_q_biased(ctx, src0, src1, dst, nullptr, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, row_low, row_high, src1_ncols,
|
||||
src1_padded_row_size, stream);
|
||||
}
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q_id(
|
||||
ggml_backend_cuda_context & ctx,
|
||||
|
||||
@@ -9,12 +9,20 @@
|
||||
|
||||
#define MMVQ_MAX_BATCH_SIZE 8 // Max. batch size for which to use MMVQ kernels.
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q_biased(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const ggml_tensor * bias,
|
||||
const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
const int64_t src1_padded_row_size, cudaStream_t stream);
|
||||
|
||||
bool ggml_cuda_mmvq_type_supported(ggml_type src0_type);
|
||||
|
||||
void ggml_cuda_op_mul_mat_vec_q_3D(ggml_backend_cuda_context & ctx,
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
||||
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
||||
|
||||
@@ -1240,14 +1240,17 @@ std::tuple<ggml_tensor*, ggml_tensor*, ggml_tensor*> llm_build_context::llm_buil
|
||||
if (bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
ggml_build_forward_expand(gf, Qcur);
|
||||
}
|
||||
if (bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
ggml_build_forward_expand(gf, Kcur);
|
||||
}
|
||||
if (bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
ggml_build_forward_expand(gf, Vcur);
|
||||
}
|
||||
return {Qcur, Kcur, Vcur};
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user