sampling: refactor sorting (#1166)

* sampling: refactor sorting

* Couldn't look at it without fixing it.
This commit is contained in:
Kawrakow
2026-01-19 16:48:54 +02:00
committed by GitHub
parent 98b30e5e81
commit ef5f17940c

View File

@@ -33,18 +33,82 @@ void llama_set_rng_seed_impl(struct llama_sampling * smpl, uint32_t seed) {
smpl->rng.seed(seed);
}
static void llama_sort(llama_token_data_array * candidates, int32_t k) {
if (candidates->sorted || candidates->size < 2) {
return;
}
if (k < 0) {
k = candidates->size;
}
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (k <= 1024) { //128) {
if (k == int(candidates->size)) {
std::sort(candidates->data, candidates->data + candidates->size, comp);
} else {
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
}
} else {
constexpr int nbuckets = 128;
constexpr float bucket_low = -10.0f;
constexpr float bucket_high = 10.0f;
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
constexpr float bucker_inter = -bucket_low * bucket_scale;
std::vector<int> bucket_idx(candidates->size);
std::vector<int> histo(nbuckets, 0);
for (int i = 0; i < (int)candidates->size; ++i) {
const float val = candidates->data[i].logit;
int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets-1, ib));
bucket_idx[i] = ib;
++histo[ib];
}
int nhave = 0;
int ib = nbuckets - 1;
for ( ; ib >= 0; --ib) {
nhave += histo[ib];
if (nhave >= k) break;
}
std::vector<llama_token_data> tmp_tokens(nhave);
auto ptr = tmp_tokens.data();
std::vector<llama_token_data*> bucket_ptrs;
bucket_ptrs.reserve(nbuckets - ib);
for (int j = nbuckets - 1; j >= ib; --j) {
bucket_ptrs.push_back(ptr);
ptr += histo[j];
}
for (int i = 0; i < (int)candidates->size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
}
}
ptr = tmp_tokens.data();
int ndone = 0;
for (int j = nbuckets-1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
}
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
}
candidates->sorted = true;
}
void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_array * candidates) {
GGML_ASSERT(candidates->size > 0);
const int64_t t_start_sample_us = ggml_time_us();
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
// Sort the logits in descending order if necessary
llama_sort(candidates, -1);
float max_l = candidates->data[0].logit;
float cum_sum = 0.0f;
@@ -63,10 +127,6 @@ void llama_sample_softmax_impl(struct llama_sampling * smpl, llama_token_data_ar
}
void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
// TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
// if (k >= (int32_t)candidates->size) {
// return;
// }
const int64_t t_start_sample_us = ggml_time_us();
@@ -77,65 +137,8 @@ void llama_sample_top_k_impl(struct llama_sampling * smpl, llama_token_data_arra
k = std::max(k, (int) min_keep);
k = std::min(k, (int) candidates->size);
// Sort scores in descending order
if (!candidates->sorted) {
auto comp = [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
};
if (k <= 128) {
std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
} else {
constexpr int nbuckets = 128;
constexpr float bucket_low = -10.0f;
constexpr float bucket_high = 10.0f;
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
constexpr float bucker_inter = -bucket_low * bucket_scale;
llama_sort(candidates, k);
std::vector<int> bucket_idx(candidates->size);
std::vector<int> histo(nbuckets, 0);
for (int i = 0; i < (int)candidates->size; ++i) {
const float val = candidates->data[i].logit;
int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
ib = std::max(0, std::min(nbuckets-1, ib));
bucket_idx[i] = ib;
++histo[ib];
}
int nhave = 0;
int ib = nbuckets - 1;
for ( ; ib >= 0; --ib) {
nhave += histo[ib];
if (nhave >= k) break;
}
std::vector<llama_token_data> tmp_tokens(nhave);
auto ptr = tmp_tokens.data();
std::vector<llama_token_data*> bucket_ptrs;
bucket_ptrs.reserve(nbuckets - ib);
for (int j = nbuckets - 1; j >= ib; --j) {
bucket_ptrs.push_back(ptr);
ptr += histo[j];
}
for (int i = 0; i < (int)candidates->size; ++i) {
int j = bucket_idx[i];
if (j >= ib) {
*bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
}
}
ptr = tmp_tokens.data();
int ndone = 0;
for (int j = nbuckets-1; j > ib; --j) {
std::sort(ptr, ptr + histo[j], comp);
ptr += histo[j];
ndone += histo[j];
}
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
}
candidates->sorted = true;
}
candidates->size = k;
if (smpl) {
@@ -210,13 +213,8 @@ void llama_sample_min_p_impl(struct llama_sampling * smpl, llama_token_data_arra
// if the candidates are sorted or the unsorted implementation failed, use this implementation
if (!min_p_applied) {
// Sort the logits in descending order
if (!candidates->sorted) {
std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
return a.logit > b.logit;
});
candidates->sorted = true;
}
// Sort the logits in descending order if needed
llama_sort(candidates, -1);
const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
size_t i = 1; // first token always matches
@@ -313,10 +311,9 @@ void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_ar
}
// Compute the absolute difference between negative log probability and entropy for each candidate
std::vector<float> shifted_scores;
std::vector<float> shifted_scores(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
shifted_scores.push_back(shifted_score);
shifted_scores[i] = fabsf(-logf(candidates->data[i].p) - entropy);
}
// Sort tokens based on the shifted_scores and their corresponding indices
@@ -343,10 +340,10 @@ void llama_sample_typical_impl(struct llama_sampling * smpl, llama_token_data_ar
}
// Resize the output vector to keep only the locally typical tokens
std::vector<llama_token_data> new_candidates;
std::vector<llama_token_data> new_candidates(last_idx);
for (size_t i = 0; i < last_idx; ++i) {
size_t idx = indices[i];
new_candidates.push_back(candidates->data[idx]);
new_candidates[i] = candidates->data[idx];
}
// Replace the data in candidates with the new_candidates data