Factor out iqk CUDA dot products

I cannot possibly wait for a 5 minutes nvcc compilation
each time I touch vecdotq.cuh.

Also, cmake was adding --options-file X.rsp to the nvcc
compile commands, which confuses clangd, so I have turned
that off.
This commit is contained in:
Iwan Kawrakow
2024-07-30 09:14:18 +03:00
committed by Kawrakow
parent 22d1568c1c
commit f6813cac0e
6 changed files with 369 additions and 169 deletions

View File

@@ -7,6 +7,10 @@ set(CMAKE_WARN_UNUSED_CLI YES)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_INCLUDES 0)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_LIBRARIES 0)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_OBJECTS 0)
if (NOT XCODE AND NOT MSVC AND NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "Build type" FORCE)
set_property(CACHE CMAKE_BUILD_TYPE PROPERTY STRINGS "Debug" "Release" "MinSizeRel" "RelWithDebInfo")

View File

@@ -259,6 +259,10 @@ if (GGML_CUDA)
find_package(CUDAToolkit)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_INCLUDES 0)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_LIBRARIES 0)
set(CMAKE_CUDA_USE_RESPONSE_FILE_FOR_OBJECTS 0)
if (CUDAToolkit_FOUND)
message(STATUS "CUDA found")

View File

@@ -0,0 +1,346 @@
//#include "common.cuh"
#include "iqk_mmvq.cuh"
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
namespace {
template <ggml_type type, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda, int ncols_y>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
// tell the compiler to use as many registers as it wants, see nwarps definition below
__launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1)
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__global__ void iqk_mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) {
constexpr int qk = ggml_cuda_type_traits<type>::qk;
constexpr int qi = ggml_cuda_type_traits<type>::qi;
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3))
constexpr int nwarps = 1;
constexpr int rows_per_cuda_block = 1;
#else
constexpr int nwarps = ncols_y <= 4 ? 4 : 2;
constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3)
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row0 = rows_per_cuda_block*blockIdx.x;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
// partial sum for each thread
float tmp[ncols_y][rows_per_cuda_block] = {0.0f};
const block_q8_1 * y = (const block_q8_1 *) vy;
for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) {
const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx
// x block quant index when casting the quants to int
const int kqs = vdr * (tid % (qi/vdr));
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs);
}
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE];
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i];
}
}
}
__syncthreads();
if (threadIdx.y > 0) {
return;
}
// sum up partial sums and write back result
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < rows_per_cuda_block; ++i) {
#pragma unroll
for (int l = 0; l < nwarps-1; ++l) {
tmp[j][i] += tmp_shared[l][j][i][threadIdx.x];
}
tmp[j][i] = warp_reduce_sum(tmp[j][i]);
}
if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) {
dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x];
}
}
}
template <ggml_type type, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
void iqk_mul_mat_vec_q_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0);
//GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE);
int id = ggml_cuda_get_device();
int64_t nwarps = 1;
int64_t rows_per_cuda_block = 1;
if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2
switch(ncols_y) {
case 1:
nwarps = 4;
rows_per_cuda_block = 1;
break;
case 2:
case 3:
case 4:
nwarps = 4;
rows_per_cuda_block = 2;
break;
case 5:
case 6:
case 7:
case 8:
nwarps = 2;
rows_per_cuda_block = 2;
break;
default:
GGML_ASSERT(false);
break;
}
}
const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block;
const dim3 block_nums(nblocks, 1, 1);
const dim3 block_dims(WARP_SIZE, nwarps, 1);
switch (ncols_y) {
case 1:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 1><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 2:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 2><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 3:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 3><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 4:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 4><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 5:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 5><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 6:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 6><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 7:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 7><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
case 8:
iqk_mul_mat_vec_q<type, vdr, vec_dot_q_cuda, 8><<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst);
break;
default:
GGML_ASSERT(false);
break;
}
}
__device__ __forceinline__ void get_int_from_table_16_shift(const uint32_t & q4, uint16_t shift, const uint8_t * all_values,
int & val1, int & val2) {
uint32_t aux32; const uint8_t * q8 = (const uint8_t *)&aux32;
aux32 = q4 & 0x0f0f0f0f;
const uint8_t * values = all_values + 16*(shift & 1);
uint16_t v1 = values[q8[0]] | (values[q8[1]] << 8);
uint16_t v2 = values[q8[2]] | (values[q8[3]] << 8);
val1 = v1 | (v2 << 16);
aux32 = (q4 >> 4) & 0x0f0f0f0f;
values = all_values + 8*(shift & 2);
v1 = values[q8[0]] | (values[q8[1]] << 8);
v2 = values[q8[2]] | (values[q8[3]] << 8);
val2 = v1 | (v2 << 16);
}
#define VDR_IQ4_K_Q8_1_MMVQ 4
#define VDR_IQ4_K_Q8_1_MMQ 4
__device__ __forceinline__ float vec_dot_iq4_k_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq4_k * bq4 = (const block_iq4_k *) vbq + kbx;
const uint8_t * all_values = (const uint8_t *)iq4k_values;
// iqs is 0...28
const int ib32 = iqs/4;
// Why iqs/4 ?
const int32_t * q8 = (const int *)bq8_1[ib32].qs;
const uint16_t * q4 = (const uint16_t *)bq4->qs + 8*ib32;
const uint16_t extra = bq4->extra >> 2*ib32;
int v1, v2;
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 4; ++j) {
const uint32_t aux32 = q4[2*j+0] | (q4[2*j+1] << 16);
get_int_from_table_16_shift(aux32, extra, all_values, v1, v2);
sumi1 = ggml_cuda_dp4a(v1, q8[j+0], sumi1);
sumi2 = ggml_cuda_dp4a(v2, q8[j+4], sumi2);
}
const float d = __half2float(bq4->d) * __low2float(bq8_1[ib32].ds);
const uint8_t sh = bq4->scales_h[ib32/2] >> 4*(ib32%2);
const int ls1 = ((bq4->scales_l[ib32] & 0xf) | ((sh << 4) & 0x30)) - 32;
const int ls2 = ((bq4->scales_l[ib32] >> 4) | ((sh << 2) & 0x30)) - 32;
return d * (sumi1 * ls1 + sumi2 * ls2);
}
#define VDR_IQ5_K_Q8_1_MMVQ 4
#define VDR_IQ5_K_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq5_k_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq5_k * bq5 = (const block_iq5_k *) vbq + kbx;
const uint8_t * all_values = (const uint8_t *)iq5nl_values;
// iqs is 0...28
const int il = iqs/2; // 0...14
const int is = iqs%2; // 0 or 1
const int ib32 = 2*(il/4); // 0, 2, 4, 6
const int32_t * q8_1 = (const int *)bq8_1[ib32+0].qs + 4*is;
const int32_t * q8_2 = (const int *)bq8_1[ib32+1].qs + 4*is;
const uint32_t * q4 = (const uint32_t *)bq5->qs + 8*(ib32/2) + 4*is;
const uint32_t * qh = (const uint32_t *)bq5->qh + 4*is;
const uint16_t extra = bq5->extra >> (2*ib32 + is);
const uint8_t * values1 = all_values + 32*(extra & 1);
const uint8_t * values2 = all_values + 8*(extra & 4);
uint32_t aux32[2];
const uint8_t * a8 = (const uint8_t *)aux32;
int v1, v2;
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 4; ++j) {
uint32_t h = qh[j] >> ib32;
aux32[0] = ((q4[j] >> 0) & 0x0f0f0f0f) | ((h << 4) & 0x10101010);
aux32[1] = ((q4[j] >> 4) & 0x0f0f0f0f) | ((h << 3) & 0x10101010);
v1 = values1[a8[0]] | (values1[a8[1]] << 8) | (values1[a8[2]] << 16) | (values1[a8[3]] << 24);
v2 = values2[a8[4]] | (values2[a8[5]] << 8) | (values2[a8[6]] << 16) | (values2[a8[7]] << 24);
sumi1 = ggml_cuda_dp4a(v1, q8_1[j], sumi1);
sumi2 = ggml_cuda_dp4a(v2, q8_2[j], sumi2);
}
// Blocks of 16: 2*ib32 + is, 2*ib32 + is + 2
const float d5 = __half2float(bq5->d);
const uint8_t sh = bq5->scales_h[ib32/2] >> 2*(is%2);
const int ls1 = (((bq5->scales_l[ib32+0] >> 4*is) & 0xf) | ((sh << 4) & 0x30)) - 32;
const int ls2 = (((bq5->scales_l[ib32+1] >> 4*is) & 0xf) | ((sh << 0) & 0x30)) - 32;
return d5 * (__low2float(bq8_1[ib32+0].ds) * sumi1 * ls1 + __low2float(bq8_1[ib32+1].ds) * sumi2 * ls2);
}
//#define VDR_IQ5_K_Q8_1_MMVQ 2
//#define VDR_IQ5_K_Q8_1_MMQ 8
//
//static __device__ __forceinline__ float vec_dot_iq5_k_q8_1(
// const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
//
// const block_iq5_k * bq5 = (const block_iq5_k *) vbq + kbx;
//
// // iqs is 0...28
// // iqs = 0...7 -> bq8_offset = 0, iqs = 8...15 -> bq8_offset = 2, iqs = 16...23 -> bq8_offset = 4, iqs = 24...31 -> bq8_offset = 6
// // bq8_offset = 0 -> 0...3, bq8_offset = 2 -> 8...11, bq8_offset = 4 -> 16...19, bq8_offset = 6 -> 24...27
// const int bq8_offset = 2*((iqs/2)/4);
// const int32_t * q8_1 = (const int *)bq8_1[bq8_offset+0].qs;
// const int32_t * q8_2 = (const int *)bq8_1[bq8_offset+1].qs;
// const uint32_t * q4 = (const uint32_t *)bq5->qs + 4*bq8_offset + ((iqs/2)%4);
// const uint32_t * qh = (const uint32_t *)bq5->qh + ((iqs/2)%4);
// const uint16_t extra = bq5->extra >> 2*bq8_offset;
// const float d5 = __half2float(bq5->d);
//
// const uint8_t * values1;
// const uint8_t * values2;
// uint32_t indx[2];
// const uint8_t * a8 = (const uint8_t *)indx;
// int v1, v2;
//
// indx[0] = ((q4[0] >> 0) & 0x0f0f0f0f) | (((qh[0] >> (bq8_offset+0)) << 4) & 0x10101010);
// indx[1] = ((q4[0] >> 4) & 0x0f0f0f0f) | (((qh[0] >> (bq8_offset+1)) << 4) & 0x10101010);
// values1 = (const uint8_t *)iq5nl_values + 32*(extra & 1);
// values2 = (const uint8_t *)iq5nl_values + 8*(extra & 4);
// v1 = values1[a8[0]] | (values1[a8[1]] << 8) | (values1[a8[2]] << 16) | (values1[a8[3]] << 24);
// v2 = values2[a8[4]] | (values2[a8[5]] << 8) | (values2[a8[6]] << 16) | (values2[a8[7]] << 24);
// int s1 = ggml_cuda_dp4a(v1, q8_1[0], 0) * (((bq5->scales_l[bq8_offset+0] & 0xf) | ((bq5->scales_h[bq8_offset/2] << 4) & 0x30)) - 32);
// int s2 = ggml_cuda_dp4a(v2, q8_2[0], 0) * (((bq5->scales_l[bq8_offset+1] & 0xf) | ((bq5->scales_h[bq8_offset/2] >> 0) & 0x30)) - 32);
//
// indx[0] = ((q4[4] >> 0) & 0x0f0f0f0f) | (((qh[4] >> (bq8_offset+0)) << 4) & 0x10101010);
// indx[1] = ((q4[4] >> 4) & 0x0f0f0f0f) | (((qh[4] >> (bq8_offset+1)) << 4) & 0x10101010);
// values1 = (const uint8_t *)iq5nl_values + 16*(extra & 2);
// values2 = (const uint8_t *)iq5nl_values + 4*(extra & 8);
// v1 = values1[a8[0]] | (values1[a8[1]] << 8) | (values1[a8[2]] << 16) | (values1[a8[3]] << 24);
// v2 = values2[a8[4]] | (values2[a8[5]] << 8) | (values2[a8[6]] << 16) | (values2[a8[7]] << 24);
// int s3 = ggml_cuda_dp4a(v1, q8_1[4], 0) * (((bq5->scales_l[bq8_offset+0] >> 4) | ((bq5->scales_h[bq8_offset/2] << 2) & 0x30)) - 32);
// int s4 = ggml_cuda_dp4a(v2, q8_2[4], 0) * (((bq5->scales_l[bq8_offset+1] >> 4) | ((bq5->scales_h[bq8_offset/2] >> 2) & 0x30)) - 32);
//
// return d5*(__low2float(bq8_1[bq8_offset+0].ds) * (s1 + s3) + __low2float(bq8_1[bq8_offset+1].ds) * (s2 + s4));
//
//}
#define VDR_IQ2_K_Q8_1_MMVQ 4
#define VDR_IQ2_K_Q8_1_MMQ 4
// TODO
static __device__ __forceinline__ float vec_dot_iq2_k_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
return 0;
//
// const block_iq2_k * bq4 = (const block_iq2_k *) vbq + kbx;
// const uint8_t * all_values = (const uint8_t *)iq4k_values;
//
// // iqs is 0...28
// const int ib32 = iqs/4;
// // Why iqs/4 ?
// const int32_t * q8 = (const int *)bq8_1[ib32].qs;
// const uint16_t * q4 = (const uint16_t *)bq4->qs + 8*ib32;
// const uint16_t extra = bq4->extra >> 2*ib32;
// int v1, v2;
// int sumi1 = 0, sumi2 = 0;
// for (int j = 0; j < 4; ++j) {
// const uint32_t aux32 = q4[2*j+0] | (q4[2*j+1] << 16);
// get_int_from_table_16_shift(aux32, extra, all_values, v1, v2);
// sumi1 = ggml_cuda_dp4a(v1, q8[j+0], sumi1);
// sumi2 = ggml_cuda_dp4a(v2, q8[j+4], sumi2);
// }
// const float d = __half2float(bq4->d) * __low2float(bq8_1[ib32].ds);
// const uint8_t sh = bq4->scales_h[ib32/2] >> 4*(ib32%2);
// const int ls1 = ((bq4->scales_l[ib32] & 0xf) | ((sh << 4) & 0x30)) - 32;
// const int ls2 = ((bq4->scales_l[ib32] >> 4) | ((sh << 2) & 0x30)) - 32;
// return d * (sumi1 * ls1 + sumi2 * ls2);
}
}
void mul_mat_vec_iq2_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ2_K, VDR_IQ2_K_Q8_1_MMVQ, vec_dot_iq2_k_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
void mul_mat_vec_iq4_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ4_K, VDR_IQ4_K_Q8_1_MMVQ, vec_dot_iq4_k_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
void mul_mat_vec_iq5_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
iqk_mul_mat_vec_q_cuda<GGML_TYPE_IQ5_K, VDR_IQ5_K_Q8_1_MMVQ, vec_dot_iq5_k_q8_1>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}

View File

@@ -0,0 +1,14 @@
#include "common.cuh"
void mul_mat_vec_iq2_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream);
void mul_mat_vec_iq4_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream);
void mul_mat_vec_iq5_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream);

View File

@@ -1,5 +1,6 @@
#include "mmvq.cuh"
#include "vecdotq.cuh"
#include "iqk_mmvq.cuh"
typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs);
@@ -24,9 +25,6 @@ static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type)
type == GGML_TYPE_IQ2_BN ? vec_dot_iq2_bn_q8_1 :
type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 :
type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 :
type == GGML_TYPE_IQ4_K ? vec_dot_iq4_k_q8_1 :
type == GGML_TYPE_IQ5_K ? vec_dot_iq5_k_q8_1 :
type == GGML_TYPE_IQ2_K ? vec_dot_iq2_k_q8_1 :
type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 :
nullptr;
}
@@ -49,9 +47,6 @@ static constexpr __device__ int get_vdr_mmvq(ggml_type type) {
type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ :
type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ :
type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ :
type == GGML_TYPE_IQ4_K ? VDR_IQ4_K_Q8_1_MMVQ :
type == GGML_TYPE_IQ5_K ? VDR_IQ5_K_Q8_1_MMVQ :
type == GGML_TYPE_IQ2_K ? VDR_IQ2_K_Q8_1_MMVQ :
1;
}
@@ -349,27 +344,6 @@ static void mul_mat_vec_iq4_xs_q8_1_cuda(
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_XS>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq4_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ4_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq5_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ5_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq2_k_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
mul_mat_vec_q_cuda<GGML_TYPE_IQ2_K>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream);
}
static void mul_mat_vec_iq3_s_q8_1_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {

View File

@@ -1247,150 +1247,8 @@ static __device__ __forceinline__ void get_int_from_table_16_shift(const uint32_
#define VDR_IQ4_K_Q8_1_MMVQ 4
#define VDR_IQ4_K_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq4_k_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq4_k * bq4 = (const block_iq4_k *) vbq + kbx;
const uint8_t * all_values = (const uint8_t *)iq4k_values;
// iqs is 0...28
const int ib32 = iqs/4;
// Why iqs/4 ?
const int32_t * q8 = (const int *)bq8_1[ib32].qs;
const uint16_t * q4 = (const uint16_t *)bq4->qs + 8*ib32;
const uint16_t extra = bq4->extra >> 2*ib32;
int v1, v2;
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 4; ++j) {
const uint32_t aux32 = q4[2*j+0] | (q4[2*j+1] << 16);
get_int_from_table_16_shift(aux32, extra, all_values, v1, v2);
sumi1 = ggml_cuda_dp4a(v1, q8[j+0], sumi1);
sumi2 = ggml_cuda_dp4a(v2, q8[j+4], sumi2);
}
const float d = __half2float(bq4->d) * __low2float(bq8_1[ib32].ds);
const uint8_t sh = bq4->scales_h[ib32/2] >> 4*(ib32%2);
const int ls1 = ((bq4->scales_l[ib32] & 0xf) | ((sh << 4) & 0x30)) - 32;
const int ls2 = ((bq4->scales_l[ib32] >> 4) | ((sh << 2) & 0x30)) - 32;
return d * (sumi1 * ls1 + sumi2 * ls2);
}
#define VDR_IQ5_K_Q8_1_MMVQ 4
#define VDR_IQ5_K_Q8_1_MMQ 4
static __device__ __forceinline__ float vec_dot_iq5_k_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
const block_iq5_k * bq5 = (const block_iq5_k *) vbq + kbx;
const uint8_t * all_values = (const uint8_t *)iq5nl_values;
// iqs is 0...28
const int il = iqs/2; // 0...14
const int is = iqs%2; // 0 or 1
const int ib32 = 2*(il/4); // 0, 2, 4, 6
const int32_t * q8_1 = (const int *)bq8_1[ib32+0].qs + 4*is;
const int32_t * q8_2 = (const int *)bq8_1[ib32+1].qs + 4*is;
const uint32_t * q4 = (const uint32_t *)bq5->qs + 8*(ib32/2) + 4*is;
const uint32_t * qh = (const uint32_t *)bq5->qh + 4*is;
const uint16_t extra = bq5->extra >> (2*ib32 + is);
const uint8_t * values1 = all_values + 32*(extra & 1);
const uint8_t * values2 = all_values + 8*(extra & 4);
uint32_t aux32[2];
const uint8_t * a8 = (const uint8_t *)aux32;
int v1, v2;
int sumi1 = 0, sumi2 = 0;
for (int j = 0; j < 4; ++j) {
uint32_t h = qh[j] >> ib32;
aux32[0] = ((q4[j] >> 0) & 0x0f0f0f0f) | ((h << 4) & 0x10101010);
aux32[1] = ((q4[j] >> 4) & 0x0f0f0f0f) | ((h << 3) & 0x10101010);
v1 = values1[a8[0]] | (values1[a8[1]] << 8) | (values1[a8[2]] << 16) | (values1[a8[3]] << 24);
v2 = values2[a8[4]] | (values2[a8[5]] << 8) | (values2[a8[6]] << 16) | (values2[a8[7]] << 24);
sumi1 = ggml_cuda_dp4a(v1, q8_1[j], sumi1);
sumi2 = ggml_cuda_dp4a(v2, q8_2[j], sumi2);
}
// Blocks of 16: 2*ib32 + is, 2*ib32 + is + 2
const float d5 = __half2float(bq5->d);
const uint8_t sh = bq5->scales_h[ib32/2] >> 2*(is%2);
const int ls1 = (((bq5->scales_l[ib32+0] >> 4*is) & 0xf) | ((sh << 4) & 0x30)) - 32;
const int ls2 = (((bq5->scales_l[ib32+1] >> 4*is) & 0xf) | ((sh << 0) & 0x30)) - 32;
return d5 * (__low2float(bq8_1[ib32+0].ds) * sumi1 * ls1 + __low2float(bq8_1[ib32+1].ds) * sumi2 * ls2);
}
//#define VDR_IQ5_K_Q8_1_MMVQ 2
//#define VDR_IQ5_K_Q8_1_MMQ 8
//
//static __device__ __forceinline__ float vec_dot_iq5_k_q8_1(
// const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
//
// const block_iq5_k * bq5 = (const block_iq5_k *) vbq + kbx;
//
// // iqs is 0...28
// // iqs = 0...7 -> bq8_offset = 0, iqs = 8...15 -> bq8_offset = 2, iqs = 16...23 -> bq8_offset = 4, iqs = 24...31 -> bq8_offset = 6
// // bq8_offset = 0 -> 0...3, bq8_offset = 2 -> 8...11, bq8_offset = 4 -> 16...19, bq8_offset = 6 -> 24...27
// const int bq8_offset = 2*((iqs/2)/4);
// const int32_t * q8_1 = (const int *)bq8_1[bq8_offset+0].qs;
// const int32_t * q8_2 = (const int *)bq8_1[bq8_offset+1].qs;
// const uint32_t * q4 = (const uint32_t *)bq5->qs + 4*bq8_offset + ((iqs/2)%4);
// const uint32_t * qh = (const uint32_t *)bq5->qh + ((iqs/2)%4);
// const uint16_t extra = bq5->extra >> 2*bq8_offset;
// const float d5 = __half2float(bq5->d);
//
// const uint8_t * values1;
// const uint8_t * values2;
// uint32_t indx[2];
// const uint8_t * a8 = (const uint8_t *)indx;
// int v1, v2;
//
// indx[0] = ((q4[0] >> 0) & 0x0f0f0f0f) | (((qh[0] >> (bq8_offset+0)) << 4) & 0x10101010);
// indx[1] = ((q4[0] >> 4) & 0x0f0f0f0f) | (((qh[0] >> (bq8_offset+1)) << 4) & 0x10101010);
// values1 = (const uint8_t *)iq5nl_values + 32*(extra & 1);
// values2 = (const uint8_t *)iq5nl_values + 8*(extra & 4);
// v1 = values1[a8[0]] | (values1[a8[1]] << 8) | (values1[a8[2]] << 16) | (values1[a8[3]] << 24);
// v2 = values2[a8[4]] | (values2[a8[5]] << 8) | (values2[a8[6]] << 16) | (values2[a8[7]] << 24);
// int s1 = ggml_cuda_dp4a(v1, q8_1[0], 0) * (((bq5->scales_l[bq8_offset+0] & 0xf) | ((bq5->scales_h[bq8_offset/2] << 4) & 0x30)) - 32);
// int s2 = ggml_cuda_dp4a(v2, q8_2[0], 0) * (((bq5->scales_l[bq8_offset+1] & 0xf) | ((bq5->scales_h[bq8_offset/2] >> 0) & 0x30)) - 32);
//
// indx[0] = ((q4[4] >> 0) & 0x0f0f0f0f) | (((qh[4] >> (bq8_offset+0)) << 4) & 0x10101010);
// indx[1] = ((q4[4] >> 4) & 0x0f0f0f0f) | (((qh[4] >> (bq8_offset+1)) << 4) & 0x10101010);
// values1 = (const uint8_t *)iq5nl_values + 16*(extra & 2);
// values2 = (const uint8_t *)iq5nl_values + 4*(extra & 8);
// v1 = values1[a8[0]] | (values1[a8[1]] << 8) | (values1[a8[2]] << 16) | (values1[a8[3]] << 24);
// v2 = values2[a8[4]] | (values2[a8[5]] << 8) | (values2[a8[6]] << 16) | (values2[a8[7]] << 24);
// int s3 = ggml_cuda_dp4a(v1, q8_1[4], 0) * (((bq5->scales_l[bq8_offset+0] >> 4) | ((bq5->scales_h[bq8_offset/2] << 2) & 0x30)) - 32);
// int s4 = ggml_cuda_dp4a(v2, q8_2[4], 0) * (((bq5->scales_l[bq8_offset+1] >> 4) | ((bq5->scales_h[bq8_offset/2] >> 2) & 0x30)) - 32);
//
// return d5*(__low2float(bq8_1[bq8_offset+0].ds) * (s1 + s3) + __low2float(bq8_1[bq8_offset+1].ds) * (s2 + s4));
//
//}
#define VDR_IQ2_K_Q8_1_MMVQ 4
#define VDR_IQ2_K_Q8_1_MMQ 4
// TODO
static __device__ __forceinline__ float vec_dot_iq2_k_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs) {
return 0;
//
// const block_iq2_k * bq4 = (const block_iq2_k *) vbq + kbx;
// const uint8_t * all_values = (const uint8_t *)iq4k_values;
//
// // iqs is 0...28
// const int ib32 = iqs/4;
// // Why iqs/4 ?
// const int32_t * q8 = (const int *)bq8_1[ib32].qs;
// const uint16_t * q4 = (const uint16_t *)bq4->qs + 8*ib32;
// const uint16_t extra = bq4->extra >> 2*ib32;
// int v1, v2;
// int sumi1 = 0, sumi2 = 0;
// for (int j = 0; j < 4; ++j) {
// const uint32_t aux32 = q4[2*j+0] | (q4[2*j+1] << 16);
// get_int_from_table_16_shift(aux32, extra, all_values, v1, v2);
// sumi1 = ggml_cuda_dp4a(v1, q8[j+0], sumi1);
// sumi2 = ggml_cuda_dp4a(v2, q8[j+4], sumi2);
// }
// const float d = __half2float(bq4->d) * __low2float(bq8_1[ib32].ds);
// const uint8_t sh = bq4->scales_h[ib32/2] >> 4*(ib32%2);
// const int ls1 = ((bq4->scales_l[ib32] & 0xf) | ((sh << 4) & 0x30)) - 32;
// const int ls2 = ((bq4->scales_l[ib32] >> 4) | ((sh << 2) & 0x30)) - 32;
// return d * (sumi1 * ls1 + sumi2 * ls2);
}