518 Commits

Author SHA1 Message Date
Kawrakow
02206cff46 Reduce back-end syncs (#1049)
* Reduce backend synchronization calls

* Also this

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-11 07:04:44 +01:00
Djip007
5669d39036 Unroll for loop for repacked BF16 MATMUL (#1047)
see https://github.com/ikawrakow/ik_llama.cpp/discussions/1028 for
detail
2025-12-08 06:09:45 +01:00
Kawrakow
2f645f2579 Fix annoying compiler warnings (#1042)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-06 09:59:07 +01:00
Kawrakow
e02b71f89e Automatically disable CUDA graphs for split mode "graph" (#1040)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-06 07:38:02 +01:00
Kawrakow
0383dfb177 CUDA: set current device in compute_forward (#1039)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-05 16:47:50 +01:00
firecoperana
42e4c61243 CUDA: Fix FA for Pascal GPU (#1036)
Co-authored-by: firecoperana <firecoperana>
2025-12-05 16:42:14 +01:00
Kawrakow
9264abfbaf Fix debug build (#1037)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-05 14:06:22 +01:00
Kawrakow
efc8c8ef8d K-cache Hadamard transforms (CUDA) (#1034)
* Hadamard transforms for K-cache on CUDA

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-04 18:46:22 +01:00
Kawrakow
18fdd80eaf Hadamard transforms for K-cache - CPU only (#1033)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-04 06:51:11 +01:00
Kawrakow
7fbe8d3ac2 Fix bug in ggml_cuda_op_scale_tensor (#1031)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-03 11:32:19 +01:00
Kawrakow
a719349982 POC: CUDA tensor parallel (MoE models) (#1022)
* Remove most of split mode row

* WIP

* WIP: also allocate the KV cache using tensor split

* WIP: it runs with wrong result

But it also looks like the backend scheduler is not going to help:
* It copies mask and input positions to GPU 0
* => RoPE ops must run on GPU 0
* => To proceed attn evaluation, GPU 1 must wait for GPU 0 to finish its
     entire attn calculation
* Same with FFN. The rms_norm gets scheduled on GPU 0. Hence, GPU 1 must
  wait for GPU 0 to finish its entore FFN calculation before it can
  start (as it needs to copy the result of rms_norm from GPU 0)
* => Seems useless without writing a bespoke TP scheduling

* WIP

* This works, but it is slow

* This is slightly better

the graph is still not being computed in parallel.
Why? Because the scheduler creates graph splits where the
result of the computation on one GPU becomes an input for the
other split. Hence, to trigger the computation on the second GPU
one needs to wait for the computation on the first GPU to finish,
even thiough the two can be done in parallel up to the sunchronization
point. So, all that is left to do is to trick the scheduler to create
to splits that can be done in parallel, and then have a graph split
where the results get combined.

* Playing games with the scheduler

This change tricks it into doing the right thing^TM.
Still quite a bit slower than split mode layer for the 8B LlaMA model.
But for the 70B LlaMA it now beats split mode layer for TG:
28 t/s vs 24.4 t/s. PP is 627 t/s vs 744 t/s.
In comparison, split mode "row" in mainline gets
484 t/s PP and 19.3 t/s TG.

* Fix attn split

Granularity for Wq, Wo is not just head size, but
head size * gqa_ratio.
Else the Wk, Wv tensors end up not being a multiple of the
head size when we divide the split determined by Wo with
the gqa_ratio.

* Show memory used per device

* Make it work with partial offload

but no tensor overrides yet, just ngl < num_layers.

* Allow for f16 source in fused_rms_norm

* This results in faster PP.

Now PP is faster than split mode layer for L3-70B.

* Rename split mode "row" to split mode "graph"

* Leave FFN partial results as f16

* WIP GLM4.5 - runs with wrong results

* WIP GLM4.5 - this works

PP is already better than split mode layer, but TG for zero context
is kind of low - 60 vs 92 t/s. TG becomes better than split mode layer
at around 20k tokens. PP at 26k tokens is 1.55X of sm layer.

* Work around compiler bug

It issues a warning that there is an extra semicolon outside of a function,
but there isn't. If I remove the anonymous namespace and turn the
functions inside into static, the warning disapears, so clearly
a compiler bug.

* Make graph reuse work with split mode graph

* Remove more split mode row remnants

* WIP tensor overrides

Runs with wrong results, don't see where the issue could be.

* This works but is slow

Still does not work for row-interleaved quants

* Slightly better

* Slightly better

* Row-interleaved quants work

* Better

* Minor

* Guarad against using split mode "graph" for unsupported models

* Guards against using merge_qkv with split mode "graph"

* WIP split mode attn

Works for LlaMA models, but not for GLM-4.5.
Doesn't seem to improve performance, so I guess no point in trying to
fix it.

* Split mode graph for qwen3moe

* Try to better distribute the splits

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-01 19:25:40 +01:00
firecoperana
15771072c7 RPC: support multiple devices including cpu (#1024)
* RPC support multiple devices

* rpc : update documentation (#16441)

Update the README file to match the newly added functionality of
exposing multiple devices from a single server.

Co-authored-by: Diego Devesa <slarengh@gmail.com>

# Conflicts:
#	examples/rpc/README.md

* Remove memory settings

* rpc : cache and reuse compute graphs (#15405)

Store the last computed graph and reuse it when possible.
Also do not return response from GRAPH_COMPUTE and assume it always
completes successfully. If this this is not the case, the server closes
the connection. This saves us a network round trip to the server.

* Add -cpu to include cpu backend

---------

Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Radoslav Gerganov <rgerganov@gmail.com>
2025-11-30 18:48:02 +01:00
firecoperana
869557c8fd Update mtmd to improve accuracy of M-RoPE (#993)
* model : Granite docling + Idefics3 preprocessing (SmolVLM) (#16206)

* feat: Add granite-docling conversion using trillion pretokenizer

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add granite-docling vocab pre enum

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use granite-docling pre

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add clip_is_idefics3

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Allow multi-token boundary sequences for image templating

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Add tiling support for idefices3 in clip.cpp

This should likely be moved into llava_uhd::get_slice_instructions, but for
now this avoids disrupting the logic there.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Partial support for full templating for idefics3 in mtmd

There are still errors encoding some of the image chunks, but the token
sequence now matches transformers _almost_ perfectly, except for the double
newline before the global image which shows up as two consecutive newline
tokens instead of a single double-newline token. I think this is happening
because the blocks are tokenized separately then concatenated.

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Fully working image preprocessing for idefics3 w/ resize and slicing

Branch: gabe-l-hart/GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* feat: Parse the preprocessor config's longest side and add it to the mmproj hparams

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Use the longest side instead of size * scale_factor

For Granite Docling, these come out to the same value, but that was just a
conicidence.

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* fix: Allow batch encoding and remove clip_is_idefics3

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Remove unnecessary conditionals for empty token vectors

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* refactor: Use image_manipulation util

Branch: GraniteDocling

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>

* add test model

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	convert_hf_to_gguf_update.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/gguf_writer.py
#	src/llama-vocab.cpp
#	src/llama-vocab.h

* mtmd : support home-cooked Mistral Small Omni (#14928)

* model : add LightOnOCR-1B model (#16764)

* model : add LightOnOCR-1B model

* add test
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py

* mtmd : fix idefics3 preprocessing (#16806)

* mtmd : fix idefics3 preprocessing

* disable granite test

* fix test for granite

* model: Add support for CogVLM model (#15002)

* Added GGUF mappings for CogVLM model

* Add tensor mapping for CogVLM visual encoder

* Add CogVLM to conversion script, no vision part yet

* Added CogVLM vision model to conversion script

* Add graph for CogVLM CLIP model

* Add graph for CogVLM

* Fixes for CogVLM. Now compiles.

* Model now runs

* Fixes for cogvlm graph

* Account for graph context change after rebase

* Changes for whitespace

* Changes in convert script according to comments

* Switch CogVLM LLM graph to merged QKV tensor

* Use rope_type variable instead of direct definition

* Change CogVLM CLIP encoder to use SWIGLU

* Switch CogVLM CLIP to use merged QKV

* Apply rebase edits and remove ggml_cont call that is now unnecessary

* clean up

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
# Conflicts:
#	convert_hf_to_gguf.py
#	examples/mtmd/clip.cpp
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py
#	src/llama-arch.cpp
#	src/llama-arch.h
#	src/llama-model.cpp
#	src/llama-model.h

* mtmd: refactor preprocessing + support max/min pixels (#16878)

* mtmd: refactor preprocessing + support max/min pixels

* fix mlp type

* implement mix/max pixels

* improve hparams

* better image preproc for qwen

* fix

* fix out of bound composite

* fix (2)

* fix token calculation

* get_merge_kernel_size()

* fix llama4 and lfm2

* gonna fix them all

* use simple resize for qwen

* qwen: increase min tokens

* no resize if dst size == src size

* restore to initial min/max tokens value for qwen
# Conflicts:
#	examples/mtmd/clip.cpp

* clip : use FA (#16837)

* clip : use FA

* cont : add warning about unsupported ops

* implement "auto" mode for clip flash attn

* clip : print more detailed op support info during warmup

* cont : remove obsolete comment [no ci]

* improve debugging message

* trailing space

* metal : remove stray return

---------

Co-authored-by: Xuan Son Nguyen <son@huggingface.co>

* model: add Janus Pro for image understanding (#16906)

* Add support for Janus Pro

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Update gguf-py/gguf/tensor_mapping.py

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Address reviewer suggestions

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* Add JANUS_PRO constant

* Update clip model handling

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Refactor JANUS_PRO handling in clip.cpp

Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>

* Update tools/mtmd/clip.cpp

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>

* em whitespace

---------

Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <son@huggingface.co>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
# Conflicts:
#	convert_hf_to_gguf.py
#	gguf-py/gguf/constants.py
#	gguf-py/gguf/tensor_mapping.py

* mtmd: pad mask for qwen2.5vl (#16954)

* mtmd: pad mask for qwen2.5vl

* improve

* mtmd: add --image-min/max-tokens (#16921)

* mtmd: improve struct initialization (#16981)

* mtmd: allow QwenVL to process larger image by default (#17020)

* Disable flash attention

* mtmd : fix embedding size for image input (#17123)

* mtmd: fix patch_size initialized to random value in audio models (#17128)

* mtmd: fix patch_size initialized to random value in audio models

* add default hparams

* add llama_model_n_embd_inp

* Fix load qwen3 vl

Change batch size

* Add description

* Fix cli build error

---------

Signed-off-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Gabe Goodhart <ghart@us.ibm.com>
Co-authored-by: Xuan Son Nguyen <son@huggingface.co>
Co-authored-by: Tianyue-Zhao <zhaotianyue@outlook.com>
Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Zhiyong Wang <85110830+ravenouse@users.noreply.github.com>
Co-authored-by: Sigbjørn Skjæret <sigbjorn.skjaeret@scala.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Co-authored-by: firecoperana <firecoperana>
2025-11-29 07:27:15 +01:00
Kawrakow
d6daee337c Attempt to fix #1014 (#1017)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-27 15:58:18 +01:00
Kawrakow
a3b8efd687 Enable iq4_nl KV cache on CUDA (#1006)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-24 09:41:19 +01:00
Kawrakow
0243356650 Fix q6_0 dequantize (#1005)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-24 09:13:46 +01:00
Nexes the Elder
9a63e768ea Legacy quants cpy_blck_q_f16 function for K cache (#1001)
Shortfixes the bug : ggml\src\ggml-cuda\cpy.cu:614: ggml_cuda_cpy_fn: unsupported type combination (q6_0 to f16) encountered when trying to use deepseek lite v2 with quantized K cache. Note: I compile my IK_Llama with GGML_CUDA_F16.

To fix this, I added a cpy_blck_q_f16 function devised by comparing the cpy_blck_q8_0_f32 and cpy_blck_q8_0_f16, and transposing the difference for the other legacy quants on the basis of the cpy_blck_q_f32 function. A "rule of three" of sorts.

Perplexity test and inference now works consistantly on -ctk q4_0 ; q4_1 ; q5_0 ; q5_1 in that scenario, with expected values and behavior.

Except on Q6_0, which sees its perplexity multiplied by 100. (I suspect the Cuda dequantize_q6_0 to be incompatible with this PR for some reason, but that's beyond what I can fix)

-ctk iq4_nl, which doesn't have yet a dequantize_iq4_nl function, is not usable that way for now.
2025-11-24 08:56:38 +01:00
Kawrakow
920f424929 Support GigaChat3 (#995)
* Fixing Gigachat support

* Gigachat: CUDA FA (needs 192 x 192 for MLA = 3)

* Gigachat: CPU FA (needs 192 x 192 for MLA = 3)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-24 06:55:14 +01:00
Kawrakow
232050b473 Attempt to fix #974 (#983)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-19 15:48:39 +01:00
Kawrakow
d764edd652 Fuse sum_rows and div with topk-moe (#984)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-19 13:44:09 +01:00
Kawrakow
054c31cf8f Fuse Q and K RoPE (#980)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-19 09:08:42 +01:00
Kawrakow
0157f78061 Minor 2025-11-18 08:55:36 +00:00
Kawrakow
03da76eb05 Fix RoPE cache on multi-GPU setup (#966)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-16 11:50:48 +02:00
Kawrakow
37d72f9878 Fix ggml_cuda_fattn_is_supported (#968)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-16 11:50:29 +02:00
Kawrakow
c64e3e3482 Fix fused up+gate when mmq is not supported (#952)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-14 06:59:27 +02:00
Kawrakow
a1f60b3535 Add missing AVX512 operators for MSVC (#948)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-14 06:58:51 +02:00
Kawrakow
ce3ce97a29 Fix repacked legacy quants (#951)
* Fix q5_0_r4

The issue waqs in the tail part. As almost all models have tensor
rows that are multiple of 128, that part was never triggered in testing.
But ithe gpt-oss models have an embedding size of 2880, so we end
up there and trigger the bug.

* Fix q6_0_r4

Same fix as q5_0_r4

* Fix q4_0_r8

* Fix q5_0_r4 and q6_0_r4 also on Zen4

* Fix q4_0_r8 also on Zen4

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-13 15:35:37 +02:00
Kawrakow
32edcb4b74 Fix rope_norm_fast_cuda (#945)
* Fix rope_norm_fast_cuda

* One more

* Also fix mrope and vision

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-13 08:54:37 +02:00
Kawrakow
0d97b9c0bf Enable fusion by default (#939)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-11 10:35:48 +02:00
Kawrakow
219fe93973 Opt from #880 also for iqk cuda gemv (#938)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-11 10:01:34 +02:00
Kawrakow
86e2bec04e DeepSeek FA optimizations (#929)
* Use new-new-mma also for MLA=3, and use mask bounds

This gives us ~25% better PP at 32k tokens compared to main

* This seems better

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-10 09:55:30 +02:00
Kawrakow
adba641347 DeepSeek TG optimizations for TG (#928)
* Fuse concat and copy into K cache
* Avoid ggml_cont() when n_token = 1

Combined effect: about +2% in TG performance with full GPU offload

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-10 09:52:07 +02:00
Kawrakow
bf474e9bff Use fused gemv+add only for TG (#933)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-10 08:34:24 +02:00
Kawrakow
56ee303254 Make biased gemv fusion optional (#931)
* Make biased gemv fusion optional

* Fix one path through gemv fusion

* Remove forgotten printf

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-09 19:09:47 +02:00
Lennart Lopin
fd37776584 Add ARM Grace Blackwell (NVIDIA DGX Spark) support (#922)
This commit enables IQK quantization operations on ARM-based systems,
specifically tested on NVIDIA DGX Spark with GB10 Grace Blackwell.

Changes:
- Enable IQK_IMPLEMENT macro for ARM NEON operations
- Add arm_neon.h header include for ARM SIMD intrinsics
- Fix compilation errors related to missing NEON types and functions

Build requirements for ARM:
  cmake .. -DGGML_CUDA=ON \
           -DCMAKE_CXX_FLAGS="-march=armv8.2-a+dotprod+fp16" \
           -DCMAKE_C_FLAGS="-march=armv8.2-a+dotprod+fp16"

Tested on:
- Platform: NVIDIA DGX Spark (aarch64)
- CPU: GB10 Grace Blackwell Superchip
- Memory: 128GB unified memory

Fixes build errors:
- 'float32x4_t' does not name a type
- 'vld1q_f32' was not declared in this scope
- 'v_expf' was not declared in this scope
- Missing FP16 NEON intrinsics
2025-11-09 14:22:40 +02:00
Kawrakow
5cc15d0ecf CUDA MoE improvements (#923)
* Use mmq_id in mul_mat_id

* Better

* Also use it in the fused up+gate op

* Better -no-fmoe TG on CUDA

Still much slower than -fmoe, but abot 20-25% faster than what
we had before.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-09 11:34:33 +02:00
Kawrakow
defa6945b3 CUDA: fuse copies to K and V cache (#921)
* Fuse copies to K- and V-cache on CUDA

* Adapt to latest main

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-08 18:13:58 +02:00
Kawrakow
3614c4f098 Adopt fix from mainline PR 17089 (#920)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-08 07:44:20 +02:00
Kawrakow
d0850dccc8 Disable add + fused_rms_norm fusion (#916)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-07 19:38:18 +02:00
Kawrakow
1c31b25380 Fix PPL increase caused by mmq_id (#913)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-07 18:58:09 +02:00
Kawrakow
532a05e466 CUDA: set compute parameters via command line arguments (#910)
* cuda: set compute parameters via command line arguments

* Also llama-bench

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-07 07:11:23 +02:00
Kawrakow
49befdd4fb Fix iqk_mul_mat when number of rows is not multiple of repack rows (#911)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-06 19:07:46 +02:00
Kawrakow
50f95d7bf3 Disable CUDA fusion by default for now (#903)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-05 10:58:12 +02:00
Kawrakow
92607d44c4 Much better CPU TG performance at long context for GLM-4.5 (#899)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-05 10:20:26 +02:00
Kawrakow
98357d9aa5 Adding cmake option to disable CUDA fusion (#902)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-05 07:09:27 +02:00
Kawrakow
11feb49562 Fix compilation failure after merging #883 (#900)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-04 19:28:52 +02:00
Thireus ☠
86597623a5 Port of Qwen3-VL support from mainline (#883)
* Port of Qwen3-VL for latest ik_llama.cpp

- convert_hf_to_gguf.py - Not touched, use llama.cpp to convert model instead
- sysl and metal support for imrope not added
- Vulkan support for imrope not tested
- Code not tested

* Bugfix n_embd was declared multiple times

https://github.com/ikawrakow/ik_llama.cpp/pull/883#issuecomment-3471179655

* Fix n_embd issue with qwen3vl

* model.output tensor not required

https://github.com/ikawrakow/ik_llama.cpp/pull/883#discussion_r2480388389

* Improved logic for qkv combined tensors

59ceaf8fcb (r2480395800)
59ceaf8fcb (r2480398187)

* Fix n_embd for merge_qkv() + cleaner code

https://github.com/ikawrakow/ik_llama.cpp/pull/883#discussion_r2481227395

* Revert TENSOR_NOT_REQUIRED
2025-11-04 19:20:54 +02:00
Kawrakow
c23fda2103 Disable some fusion, RoPE cache off by default (#894)
* Disable some fusion and make rope cahe off by default

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-04 07:50:14 +02:00
Kawrakow
fb0d5a995c RoPE cache (#887)
* Introducing rope cache

When computing RoPE, the rotation angles in each layer
are exactly the same, and only depend on the token positions
(and other constant, model dependent parameters).
So, I wonder, why don't we compute the angles just once
and then reuse for the Q and K RoPE in each layer?

This commit does it as a POC on the CPU, and uses it in
the Qwen3-MoE compute graph.

* cuda: neox works

* WIP

* rope_cache: norm works

* Fused rope+rope

* Fused rope+rope (norm)

* Fused rms+rms+rope+rope (neox) - not working

* WIP

* Also qwen3

* Add command line arg to disable rope cache

* Disable RoPE cache if rope type is not neox or norm

* Add missing break after merge with main

* Fused fused_rms+fused_rms+rope+rope (with -mqkv)

* Fused fused_rms+fused_rms+rope+rope (without -mqkv)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-03 18:42:20 +02:00
Kawrakow
846e736e85 cuda: add missing backwards RoPE op (#889)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-03 07:45:18 +02:00