Commit Graph

221 Commits

Author SHA1 Message Date
Kawrakow
6028362ef6 Native build ooption for CUDA when GGML_NATIVE is set (#280)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-22 18:17:51 +01:00
Kawrakow
13ecc5332e Fighting with cmake (#279)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-22 16:58:30 +01:00
Kawrakow
b8d1fac97b Convert models to row-interleaved quants using the quantize tool (#272)
* Repack a model with the quantize tool

* WIP

* Fixed various issues

As we don't have a way to tell if a repacked quant has been modified,
I had to remove the modification at the expense of a slight decrease
in performance. This affects q8_0_r8, q8_KV_r8, q8_k_r8 on Zen4, and
q4_0_r8 on ARM.

* Create wk_b and wv_b as Q8_0_R8 if the wkv_b type is interleaved

* Fix GCC 13.3 compilation error

* Another one

* Add missing include

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-21 07:23:36 +01:00
Kawrakow
22c84a126f Fix ggml_compute_forward_dup_q (#269)
I broke it with PR #265. I was testing with a model where
the wk_b and wk_v tensors were present, so didn't need to be computed,
so didn't notice that the change I made to ggml_compute_forward_dup_q
breaks that computation.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-19 15:47:24 +01:00
Kawrakow
c3b75c531c Prevent FlashMLA-1 from running on CUDA (#268)
as it is not supported.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-19 13:03:59 +01:00
Kawrakow
8e549b4234 Allow q8_0 cache on the CPU for FlashMLA-2 (#265)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-18 15:41:05 +01:00
Kawrakow
68a5b60408 Make Q8_0 KV cache work with mla=2,fa on CUDA (#264)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-18 15:40:47 +01:00
Kawrakow
f4ebf13b6a Fix #261 (#262)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-18 07:44:43 +01:00
Kawrakow
bdcae905c4 Compile time option to use bf16 for qunts without MMQ kernels (#261)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-18 07:37:10 +01:00
Kawrakow
dcdfad29f7 FlashMLA-2: reduce compute buffer size (CUDA and CPU) (#260)
* FlashMLA-2: eliminate intermediate f32 tensors

This works on the CPU. PP performance is ~13% better for 16k tokens
and compute buffer is quite a bit smaller.

* FlashMLA-2: enable fast path only on the CPU for now

I did implement the necessary ops on CUDA, but something is
still wrong there, so for now we only use it when running
CPU-only.

* FlashMLA-2: slightly smaller computer buffer size

* Prepare wk_b when loading DeepSeek models (if wk_b is missing)

* Add some comments

* Fix case where wkv_b is quantized with k- or i-quants.

* Fix CUDA

There is an issue with quantized GEMV on CUDA when the left operand
(the matrix) is not contiguous. So, for now, we also create wv_b
during model loading and use that instead of the 3D view of wkv_b.

* FlashMLA-2: avoid conversions to f32 also on CUDA

* Be able to compute for more than 65535 tokens

On CUDA just a quick hack that allows us to cancatenate tensors
with more than 65535 rows along zroth dimension as needed by
FlashMLA-2. Also needed some care in the perplexity tool to
avoid int overflows when evaluating the computed logits.

* Reduce memory usage for FlashMLA-2

Oh, also fix int overflow in the CUDA concat implementation.

It is funny how the llama.cpp 64-bit police has gone (almost) everywhere
and replaced 32-bit ints with 64-bit ints, needed or not,
but hasn't done it where it is actually needed.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-18 07:36:42 +01:00
Kawrakow
305fabfc3b FlashMLA-2 (CPU): faster and smaller compute buffer size (#253)
* FlashMLA-2: eliminate intermediate f32 tensors

This works on the CPU. PP performance is ~13% better for 16k tokens
and compute buffer is quite a bit smaller.

* FlashMLA-2: enable fast path only on the CPU for now

I did implement the necessary ops on CUDA, but something is
still wrong there, so for now we only use it when running
CPU-only.

* FlashMLA-2: slightly smaller computer buffer size

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-13 12:07:43 +02:00
Kawrakow
3f23ed68f1 MLA-2: Allow usage of q8_0 for KV cache on CUDA (#252)
* FlashMLA(CUDA): WIP to allow q8_0 quantized cache

* WIP

* FlashMLA(CUDA) - allow q8_0 for KV cache

This works, and PP is not bad, but TG is still quite a bit slower.

* FlashMLA(CUDA) - allow q8_0 for KV cache

This is better. ~9% slower than f16 cache for short contexts,
nearly on par at 16k tokens.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-12 07:21:46 +02:00
Kawrakow
a48e163247 DeepSeek imatrix stuff (#250)
* This gives us ~20% TG speedup for DeepSeek on CUDA

* Slightly better

* Also do it for plain (not fused) mul_mat_id

* Guard against numerical precision issues for MLA on CUDA

* imatrix: wv_b <-> wkv_b

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-10 16:19:09 +02:00
Kawrakow
699c9cb7f6 Faster MoE token generation on CUDA (#248)
* This gives us ~20% TG speedup for DeepSeek on CUDA

* Slightly better

* Also do it for plain (not fused) mul_mat_id

* Guard against numerical precision issues for MLA on CUDA

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-10 16:16:51 +02:00
Kawrakow
81748fb55e Faster FlashMLA prompt processing (#246)
* FlashMLA-2: faster prompt processing

The current MLA implementation computes

wv_b * (k_cache * softmax(k_cache * (wk_b*q)))

This leads to 3.4X more multiply-adds (madds)
compared to standard attention. Due to the resulting
tensor shapes, TG is still faster than standard attention
because the k_cache*(wk_b*q) and k_cache*(softmax(k_cache * (wk_b*q)))
multiplications become GEMMs, so the additional madds are
more than compensated for due to the much higher performance
of GEMMs compared to GEMVs. But for PP, where we are dealing
with GEMMs in both cases, the additional madds needed for MLA
lead to lower performance, with the performance gap increasing
with context length.

So, then, when we are dealing with PP, we can rearrange the
above to (wv_b * k_cache) * softmax( (wk_b^T*k_cache) * q),
thus transforming it into the standard attention mechanism.
We do need two additional matrix multiplications (which in practice
is done as a single wkv_b * k_cache GEMM) with the *entire*
K cache. But this is still cheaper than MLA, as we end up with
1.8X the madds required by standard attention. Oh, these figures
are for the DeepSeek-V3/R1/Lite attention architecture.
This leads to a significant PP performance increase compared
to standard MLA with FA.

There are many upsides to this:
* If we only apply the above trick when we are processing more than
  X tokens (with suitable chosen X), TG performance stays the same
  as MLA with FA
* We still need to store just the K-cache, so 576 entries per layer
  for DeepSeek-V3/R1/Lite
* We get significantly better PP performance
* We can use MLA+FA on CUDA. It works already with this commit
  for PP, something is not yet quite right for TG.

The downside is that it only works with fp16 cache (for now).
This is so because we need to convert the cache to fp32,
else we cannot do the wkv_b * k_cache matrix multiplication
(which in ggml requires the second operand to be fp32).
But converting (copying) to fp32 only works for f16, bf16 and
f32 tensors, so no luck with quantized cache. Another reason
that we need to convert to fp32 is that the cache contains the
RoPE'd portion, which we need to concatenate to the result of
the wkv_b * k_cache matrix multiplication. Also this op
works only when the tensors being concatenated are both fp32.

So much about ggml being a general purpose ML library.

* FlashMLA-2: on the CPU it now works for quantized cache

except for q8_KV (q8_KV has row meta data, and there is still
some confusion with row sizes because of that).

* FlashMLA-2: on the CPU it now works also with q8_KV

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-08 19:33:41 +02:00
Kawrakow
3d85a1d663 Better FlashMLA (#243)
* This is a better FA for TG

It should benefit MLA and GQA. Tested to work with
DeepSeek-Lite MLA, not yet for GQA.
For tg64@pp8192 it is ~13% faster than MLA without FA,
and 57% faster that the main branch FA.

* WIP

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-07 09:46:58 +02:00
Kawrakow
7bdbf99bbd DeepSeek CUDA Flash Attention (#241)
* WIP CUDA FA with Dk != Dv

* WIP

* CUDA FA WIP - It actually works!

No TG yet, but for PP I can run FA with fp16 cache and it gets
the same answer.

* CUDA FA WIP - it now works for Q8_0 + Q8_0 for KV cache

* CUDA FA WIP - TG, not working yet.

* CUDA FA with Dk != Dv: it works now for DeepSeek

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-05 07:27:49 +02:00
Kawrakow
a87e54db6e Flash MLA (CPU only) (#240)
* FlashMLA - it finally works (on the CPU)

* FlashMLA: allow for f16 and bf16 cache in addition to q8_0

* It works with ggml FA, not with iqk FA

* WIP

* FlashMLA: it now works with iqk

I had forgotten to divide the Q stride by sizeof(float) and
that's why, very cobfusingly, it was working for TG but not for PP.

* WIP

* FlashMLA: that should be it for now

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-03 15:17:51 +02:00
Kawrakow
a89adaa78f SER - Smart Expert Reduction (#239)
* A better way to measure the cost of ggml_barrier

* Smart expert selection

* Add ser option to llama-bench

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-02 13:47:38 +02:00
Kawrakow
ef9a3d17b5 A better way to measure the cost of ggml_barrier (#238)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-01 17:12:58 +02:00
Kawrakow
a79ab8f342 Reduce size of compute buffers (#237)
* This reduces compute buffer size for MLA

* This should accomplish it for standard attention

* Much better

* Better concat for contiguous tensors

If all the op does is to concatenate the second tensor
to the first, why would we want to have a loop?

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-03-01 08:25:27 +02:00
Kawrakow
b762db7c92 Option to use MLA without a transposed cache (#235)
The `-mla` command line option turns into an int from a bool.
mla = 0: use standard attention
mla = 1: use MLA with transposed cache
mla > 1: use MLA without transposed cache

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-27 16:40:49 +02:00
Kawrakow
51029edfdf Faster MLA on CUDA (#234)
* Slight MLA TG performance improvement on CUDA

The low MLA performance on CUDA is dues to
the wk_b * q_nope operation.

It turns into n_head matrix multiplications with
n_head separate quantization and GEMV steps.
The associated overhead is just too much for TG
where each GEMV is very fast (512 x 128 = 131 KFLOP
for DeepSeek-Lite, 4X that for DeepSeekV3/R1).
The way it was done there was also a copy of each q_nope
row before quantization, which I have now eliminated.
This results in a ~2.5% speedup.
What needs to happen instead is to launch a single
computation that quantizes all heads, and then have
a kernel that does the GEMV for all heads instead of
n_head sequential GEMVs.

* Slightly better

* CUDA: Quantize non-contiguous tensors

* Much better MLA

It is a total hack, but it works.

* Cleanup

Remove duplicated gemv's.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-27 08:42:18 +02:00
Kawrakow
94b659a2f1 Give the user the option to override where model weights are stored (#232)
* Give the user the option to override where model weights are stored

* Fix ggml_nbytes() problem and cleanup

For a tensor with zero elements ggml_nbytes() was returning
uint64_t::max, and this was causing graph allocation failure.

* Add timing info to CUDA graph evaluation

* Add more timing info

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-25 17:55:58 +02:00
Kawrakow
547eee81d9 Fix #230 (#231)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-24 09:29:58 +02:00
Kawrakow
ac1d259b93 Fused MoE ffn_up and ffn_gate (#229)
* Fusing MoE up * unary(gate)

* Fusing MoE up * unary(gate): CUDA

We get ~13% speedup for PP-512 and ~2% for TG-128
for DeepSeek-Lite

* On CUDA also fuse MoE down * (up * unary(gate))

in case the MUL_MAT_ID op for the down experts is the next
op in the graph.

* Command line option to enable fused MoE up*unary(gate)

* Add fmoe option to llama-bench

* Adding forgotten gelu, relu, silu on ARM

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-23 14:31:11 +02:00
Kawrakow
71b7b510c2 Fix compilation error with IQK_FA_ALL_QUANTS enabled (#226)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-23 08:02:16 +02:00
Kawrakow
4926105844 Fix #217 (#220)
* Fix #217

* Remove stuff commited by mistake

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-22 14:25:38 +02:00
Kawrakow
33646fc409 Fuse MoE up and gate matrix multiplications (#219)
* This seems to be a better way

to do the attention matrix multiplications in the TG case.

* Cleanup

* Fuse up and gate gemms in MoE models

Small (~1-2%) but measurable performan ce gain

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-22 09:41:40 +02:00
Kawrakow
c4a5103299 Better strategy for attention matrix multiplications when generating tokens (#218)
* This seems to be a better way

to do the attention matrix multiplications in the TG case.

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-22 09:38:51 +02:00
Kawrakow
b9a6639ac3 Hopefully this really fixes the confusion between AVX512 and FANCY_SIMD (#216)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-21 15:33:25 +02:00
Kawrakow
a45da7bfbf Fix NEON gemm/gemv for legacy quants when row size is not divisible by 128 (#213)
* Fix gemm/gemv for legacy quants when row size is not divisible by 128

* Fix typo

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-20 13:55:13 +02:00
Kawrakow
498a582919 Optimized GEMM/GEMV for IQ1_S (#212)
* Adding iq1_s to iqk_mul_mat (Zen4)

* iq1_s: slightly better on Zen4

* iq1_s: AVX2

* iq1s: NEON

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-20 12:41:45 +02:00
Kawrakow
a0ebfdd661 Q8_KV: 8-bit quantization type targeting the KV cache (#208)
* Adding q8_KV - Basics + AVX2 gemm/gemv

* q8_KV: Better AVX2 gemm

* q8_KV: Better Zen4 gemm

We get 225.7 t/s for L3-8B. In comparison q8_0 without
run-tinme-repacking is at 169 t/s.

* q8_KV: AVX2 gemm/gemv

We get 254 t/s for L3-8B vs 194 t/s for q8_0 without rtr.

* q8_KV: be able to use it for K cache

This required quite a few fixes in ggml and llama.cpp:
* ggml: do not calculate row size as n/block_size*type_size. I had
  removed most of it when implementing the quants with per row scale,
  bit it was stull lurking in ggml_copy. Not sure if these were the last
  remnants of ggmil-style row sizes, or if there are still places left
* llama.cpp: get rid of the the 1d K cache assumption. Create and manage
  the K-cache as a 2D tensor so we can have per row meta data as needed
  by q8_KV.

Using q8_KV for K-cache results in non-negligible performance gains.
More details to follow, but for DeepSeek-Lite with MLA, we get
18% speedup for PP-8192 compared to q8_0 K-cache.

* q8_KV: be able to use it for K cache in FA

* q8_KV: repack it for K*Q in FA

* q8_KV: slightly faster gemv on Zen4

* q8_KV: slightly faster gemv on Zen4

* q8_KV: ARM_NEON

We get PP-512 = 167 t/s for L3-8B without interleaving!
We do the interleaving on the fly, so I wonder if this
could be done for other quants as well.

* q8_KV: use it in FA on NEON

* q8_KV_r8 - repacked q8_KV

On Zen4 it is slower than q8_k_r8 (292 vs 370 t/s)
This makes no sense whatsoever as the q8_KV_r8 GEMM is
basically the q8_k_r8 GEMM with the unnecessary block stuff
removed (so, one would think that it would be faster).

* q8_KV_r8: don't use nrc_y = 16 on Zen4

This is faster - 350 t/s. Why?
Much better than the 290 t/s we had before, but still slower
than the 370 t/s for q8_k_r8.

* q8_KV: nrc_y = 16 also doesn't pay off in FA

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-19 11:47:07 +02:00
Kawrakow
047ba895bb Repack also experts (#210)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-19 10:01:49 +02:00
Iwan Kawrakow
d44aba79ea Bug fix in activation quantization
I added a change in the last PR how activations are quantized.
It looked like it is working and slightly improving performance.
But I now hit an edge case where I get gibberish that goes away if
I remove the change. I absolutely don't see what goes wrong, so
leaving the change in commented out for now.
2025-02-15 19:50:53 +02:00
Kawrakow
0551e7630b Moving 4D gemm logic from ggml.c to iqk_mul_mat.cpp (#207)
This allows us to optimize TG performance for GQA models.
E.g., for IQ4_XS L3-8B with 8k TG-64 goes from 8.6 to 10.26 t/s.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-15 08:45:45 +02:00
Kawrakow
1bbb543478 Fix iqk_mul_mat on AVX512 systems that are missing BF16 support (#204)
* Fix iqk_mul_mat on AVX512 systems that are missing BF16 support

* One more

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-12 14:22:26 +02:00
Kawrakow
3c98bfb33d DeepSeek FA support (CPU only) (#200)
* Adding support for K head size != V head size

This is relevant for DeepSeek models.
At this point ggml CPU FA works.
Now I need to go and change iqk FA to make it work
with Dk != Dv.

* iqk support for K head size != V head size

To not have compilation time explode, just
Dk = 192, Dv = 128 for now (DeepSeek)

* FA: very slightly faster for nq = 1 (TG)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-11 14:46:30 +02:00
Kawrakow
c12f73ba61 Add optional MLA (#188)
* Deepseek MLA Optimizations

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>

* Make MLA optional

* Remove some unnecessary copies in the MLA attention

* Deepseek MLA Optimizations V2 (#195)

* Avoid allocating MHA KV cache when MLA is turned on

* Added missing gguf-py file

* Added final optimizations

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>

* Make sure we do have wk_b and wv_b before enabling MLA

---------

Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>

* Use type_k and type_v to set the types of the MLA caches

They were hard-coded at f16.
On my Ryzen-7950X with native bf16 support I get a fairly
significant PP performance boost with bf16 KV-cache:
PP-4096 = 320 t/s up from 292 t/s with fp16 KV-cache.

* Better gemm strategy when nth > nhead

It gives a ~10% PP performance boost for DeepSeek-Lite with 32 threads
(with or without MLA).
Before this commit, when nth > nhead heads were processed
sequentially with all nth threads participating in each
matrix multiplication. Now we ind the gcd of nhead and
nth and split threads into nth/gcd groups, each group
processing nhead/gcd heads.

---------

Co-authored-by: Saood Karim <saood05@gmail.com>
Co-authored-by: Stanisław Szymczyk <sszymczy@gmail.com>
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-09 19:48:44 +02:00
Kawrakow
cae2b81155 FA: Add option to build all FA kernels (#197)
Similar to the CUDA situation.
It is OFF by default.
If OFF, only F16, Q8_0, Q6_0, and, if the CPU provides native
BF16 support, BF16 FA kernels will be included.
To enable all, cmake -DGGML_IQK_FA_ALL_QUANTS=1 ...
This cuts compilation time for iqk_mul_mat.cpp by almost half
(45 seconds vs 81 seconds on my Ryzen-7950X).

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-09 18:59:33 +02:00
Kawrakow
33390c4b74 Use Q8_K_128 for IQ1_S_R4 and IQ1_M_R4 matrix multiplications (#194)
* iq1_s_r4: Use Q8_K_128 instead of Q8_1_X4 for gemm (AVX2/Zen4)

* iq1_m_r4: Use Q8_K_128 instead of Q8_1_X4 for gemm (AVX2/Zen4)

* iq1_s_r4: Use Q8_K_128 instead of Q8_1_X4 for gemm (Neon)

* iq1_m_r4: Use Q8_K_128 instead of Q8_0_X4 for gemm (Neon)

* Simdify q8_K128 quantization also on Neon

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-09 09:14:52 +02:00
Kawrakow
6d7b58eade Revert #79 (#192)
* Revert "Do not quantize activations if not necessary (#79)"

This reverts commit 0bf4d99774.

* Fixed compilation after revert

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-08 09:48:59 +02:00
Kawrakow
4601a8c373 cuda: non-contiguous rms norm (#190)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-07 08:33:42 +02:00
Kawrakow
b08a2e9dfc Add additional checks for iq1_s_r4 quantization (#191)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-07 08:33:28 +02:00
Kawrakow
a08501ee52 Rename q4_0_r4, q8_0_r4 and iq4_xs_r4 to _r8 (#189)
* Rename q4_0_r4 to q4_0_r8 to reflect actual row interleaving

* Rename q8_0_r4 to q8_0_r8 to reflect actual row interleaving

* Rename iq4_xs_r4 to iq4_xs_r8 to reflect actual row interleaving

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-06 18:45:28 +02:00
Kawrakow
7f61b3068e IQ1_M_R4: better 1.75 bpw quants (#187)
* iq1_m_r4: basics (quantize/dequantize)

* iq1_m_r4: Zen4 gemm

* iq1_m_r4: neon gemm

* iq1_m_r4: switch to q8_0_x4 also on AVX2/Zen4

With the deltas being per group of 8, we cannot make use
of the q8 sums stored in q8_1, so we get a tiny gain by
using q8_0_x4.

* iq1_m_r4: rename mul_mat_iq1_m_r4_q8_1 to mul_mat_iq1_m_r4_q8_0

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-06 14:08:52 +02:00
Kawrakow
a6f9f2ec9a iq1_s_r4: slightly faster NEON gemm/gemv (#186)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-05 14:45:51 +02:00
Kawrakow
8b7536bda8 IQ1_S_R4: better 1.5 bpw quants (#185)
* iq1_s_r4: basics - quantize/dequantize

* iq1_s_r4: gemm/gemv works on AVX2/Zen4

* Don't forget to make sure we have a multiple of 4 rows per thread

* iq1_s_r4: this is better

* iq1_s_r4: fix Zen4 after AVX2 changes

* iq1_s_r4: NEON gemm/gemv

* iq1_s_r4: more bits for shared experts

With this mix we arrive at PPL(512) = 9.4140
for Deepseek-Lite using 1.766 bpw for the repeating layers.

On the Ryzen-7950X we get PP-512 = 494 t/s and
TG-128 = 52 t/s @ 16 threads.

* Forgotten counter increment

* iq1_s_r4: slightly faster AVX2/Zen4 gemm/gemv

* Compiler warnings

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-02-05 13:49:39 +02:00
Kawrakow
ecf111a11c Deepseek-Lite (#184)
* Quantization mixes tweaks

* Make iq4_nl_r4 work with row size that are not a multiple of 128

... on Zen4

* Make iq4_nl_r4 work with row size that are not a multiple of 128

... on AVX2

* Make iq4_nl_r4 work with row size that are not a multiple of 128

... on AVX2

* Make q6_0_w4 work with row size that are not a multiple of 128

... on Zen4

* Make q6_0_w4 work with row size that are not a multiple of 128

... on Zen4

* Make q5_0_r4 work with row size that are not a multiple of 128

... on Zen4 and AVX2

* Make q5,6_0_r4, iq4_nl_e4 work with row size that are not a multiple of 128

also on NEON.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-01-30 18:36:24 +02:00