mirror of
https://github.com/ikawrakow/ik_llama.cpp.git
synced 2026-01-26 17:20:01 +00:00
223 lines
7.0 KiB
C++
223 lines
7.0 KiB
C++
#include "ggml.h"
|
|
#include "llama.h"
|
|
#include "common.h"
|
|
#include "llama-vocab.h"
|
|
|
|
#ifdef _WIN32
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
# define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <cstdlib>
|
|
#include <cstdio>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
static void print_usage(int, char ** argv) {
|
|
LOG_TEE("\nexample usage:\n");
|
|
LOG_TEE("\n %s -m model.gguf -c 8192 -b 2048 -ub 512\n", argv[0]);
|
|
LOG_TEE("\n");
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
|
|
gpt_params params;
|
|
|
|
if (!gpt_params_parse(argc, argv, params)) {
|
|
print_usage(argc, argv);
|
|
return 1;
|
|
}
|
|
if (params.nrep < 1) params.nrep = 1;
|
|
|
|
// init LLM
|
|
|
|
llama_backend_init();
|
|
llama_numa_init(params.numa);
|
|
|
|
// initialize the model
|
|
|
|
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
|
|
|
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
|
|
|
if (model == NULL) {
|
|
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
|
|
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
|
|
|
if (ctx == NULL) {
|
|
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
|
return 1;
|
|
}
|
|
|
|
const unsigned int n_kv_max = llama_n_ctx(ctx);
|
|
|
|
|
|
const llama_vocab * vocab = llama_get_vocab(ctx);
|
|
llama_token bos = vocab->token_bos();
|
|
//llama_token eos = llama_token_eos_impl(*vocab);
|
|
|
|
const unsigned int n_vocab = llama_n_vocab(model);
|
|
|
|
// decode in batches of ctx_params.n_batch tokens
|
|
auto decode_helper = [](llama_context * ctx, llama_batch & batch, int32_t n_batch) {
|
|
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch) {
|
|
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
|
|
|
|
llama_batch batch_view = {
|
|
n_tokens,
|
|
batch.token + i,
|
|
nullptr,
|
|
batch.pos + i,
|
|
batch.n_seq_id + i,
|
|
batch.seq_id + i,
|
|
batch.logits + i,
|
|
};
|
|
|
|
const int ret = llama_decode(ctx, batch_view);
|
|
if (ret != 0) {
|
|
LOG_TEE("failed to decode the batch, n_batch = %d, ret = %d\n", n_batch, ret);
|
|
return false;
|
|
}
|
|
|
|
llama_synchronize(ctx);
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
const unsigned int pp = params.n_ubatch;
|
|
const unsigned int tg = params.n_predict > 0 ? params.n_predict : params.n_ubatch / 4;
|
|
|
|
if (!params.sweep_bench_output_jsonl) {
|
|
LOG_TEE("\n");
|
|
LOG_TEE("%s: n_kv_max = %d, n_batch = %d, n_ubatch = %d, flash_attn = %d, n_gpu_layers = %d, n_threads = %u, n_threads_batch = %u\n", __func__, n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch);
|
|
LOG_TEE("\n");
|
|
LOG_TEE("|%6s | %6s | %6s | %8s | %8s | %8s | %8s |\n", "PP", "TG", "N_KV", "T_PP s", "S_PP t/s", "T_TG s", "S_TG t/s");
|
|
LOG_TEE("|%6s-|-%6s-|-%6s-|-%8s-|-%8s-|-%8s-|-%8s-|\n", "------", "------", "------", "--------", "--------", "--------", "--------");
|
|
}
|
|
|
|
llama_batch batch = llama_batch_init(n_kv_max, 0, 1);
|
|
|
|
// warm up
|
|
if (params.warmup) {
|
|
common_batch_add(batch, bos, 0, { 0 }, false);
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
if (params.batch_warmup) {
|
|
// clean up KV cache after generation
|
|
llama_kv_cache_seq_rm(ctx, 0, params.n_ubatch, -1);
|
|
|
|
// prepare batch of pp size for prompt processing performance measurement
|
|
common_batch_clear(batch);
|
|
|
|
for (unsigned int i = 0; i < params.n_ubatch; ++i) {
|
|
common_batch_add(batch, std::rand() % n_vocab, i, { 0 }, false);
|
|
}
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_ubatch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
common_batch_clear(batch);
|
|
llama_kv_cache_clear(ctx);
|
|
|
|
int i_loop = 0;
|
|
|
|
for (unsigned int n_kv = 0; n_kv < n_kv_max; n_kv += params.n_ubatch) {
|
|
// clean up KV cache before generation
|
|
//llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
|
|
|
int nrep = i_loop < 1 ? params.nrep : 1;
|
|
|
|
// first measure token generation performance at this context size
|
|
const auto t_tg_start = ggml_time_us();
|
|
|
|
for (int irep = 0; irep < nrep; ++irep) {
|
|
|
|
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
|
|
|
for (unsigned int i = 0; i < tg; ++i) {
|
|
common_batch_clear(batch);
|
|
common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, true);
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
const auto t_tg_end = ggml_time_us();
|
|
|
|
// measure prompt processing performance
|
|
const auto t_pp_start = ggml_time_us();
|
|
|
|
for (int irep = 0; irep < nrep; ++irep) {
|
|
|
|
// clean up KV cache after generation
|
|
llama_kv_cache_seq_rm(ctx, 0, n_kv, -1);
|
|
|
|
// prepare batch of pp size for prompt processing performance measurement
|
|
common_batch_clear(batch);
|
|
|
|
for (unsigned int i = 0; i < pp; ++i) {
|
|
common_batch_add(batch, std::rand() % n_vocab, n_kv + i, { 0 }, false);
|
|
}
|
|
batch.logits[batch.n_tokens - 1] = true;
|
|
|
|
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
|
|
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
|
return 1;
|
|
}
|
|
|
|
}
|
|
|
|
const auto t_pp_end = ggml_time_us();
|
|
|
|
// calculate and print metrics
|
|
const float t_pp = (t_pp_end - t_pp_start) / 1000000.0f / nrep;
|
|
const float t_tg = (t_tg_end - t_tg_start) / 1000000.0f / nrep;
|
|
|
|
const float speed_pp = pp / t_pp;
|
|
const float speed_tg = tg / t_tg;
|
|
|
|
if(params.sweep_bench_output_jsonl) {
|
|
LOG_TEE(
|
|
"{\"n_kv_max\": %d, \"n_batch\": %d, \"n_ubatch\": %d, \"flash_attn\": %d, \"n_gpu_layers\": %d, \"n_threads\": %u, \"n_threads_batch\": %u, "
|
|
"\"pp\": %d, \"tg\": %d, \"n_kv\": %d, \"t_pp\": %f, \"speed_pp\": %f, \"t_tg\": %f, \"speed_tg\": %f }\n",
|
|
n_kv_max, params.n_batch, params.n_ubatch, params.flash_attn, params.n_gpu_layers, ctx_params.n_threads, ctx_params.n_threads_batch,
|
|
pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg
|
|
);
|
|
} else {
|
|
LOG_TEE("|%6d | %6d | %6d | %8.3f | %8.2f | %8.3f | %8.2f |\n", pp, tg, n_kv, t_pp, speed_pp, t_tg, speed_tg);
|
|
}
|
|
|
|
++i_loop;
|
|
}
|
|
|
|
llama_batch_free(batch);
|
|
|
|
llama_free(ctx);
|
|
llama_free_model(model);
|
|
|
|
llama_backend_free();
|
|
|
|
return 0;
|
|
}
|