Files
ik_llama.cpp/github-data/issues/271 - Possible regression computing _wk_b_ tensors on the fly after PR _265.md
2025-07-23 13:31:53 +02:00

71 KiB
Raw Permalink Blame History

📝 #271 - Possible regression computing wk_b tensors on the fly after PR #265

Author ubergarm
State Closed
Created 2025-03-19
Updated 2025-03-24

Description

I was re-running some comparisons between my custom quant and unsloth UD-Q2_K_XL quant with the latest PRs. This is the same Thread Ripper Pro 24-core with 256GB RAM and RTX A6000 that I've been using.

While the following command works fine on 68a5b604 Make Q8_0 KV cache work with mla=2,fa on CUDA (#264), it crashes after 8e549b42 Allow q8_0 cache on the CPU for FlashMLA-2 (#265):

$ ./build/bin/llama-server --version
version: 3594 (8e549b42)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

$ CUDA_VISIBLE_DEVICES="0," \
./build/bin/llama-server \
    --alias unsloth/DeepSeek-R1-UD_Q2_K_XL \
    --model /mnt/raid/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-UD-Q2_K_XL/DeepSeek-R1-UD-Q2_K_XL-00001-of-00005.gguf \
    -rtr \
    --ctx-size 65536 \
    -ctk q8_0 \
    -mla 2 -fa \
    -amb 512 \
    -fmoe \
    --n-gpu-layers 63 \
    --override-tensor exps=CPU \
    --parallel 1 \
    --threads 24 \
    --host 127.0.0.1 \
    --port 8080
.
.
.
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q2_K:  171 tensors
llama_model_loader: - type q3_K:    3 tensors
llama_model_loader: - type q4_K:  306 tensors
llama_model_loader: - type q6_K:  184 tensors
.
.
.
Tensor blk.59.ffn_up_exps.weight buffer type overriden to CPU
Tensor blk.60.ffn_gate_exps.weight buffer type overriden to CPU
Tensor blk.60.ffn_down_exps.weight buffer type overriden to CPU
Tensor blk.60.ffn_up_exps.weight buffer type overriden to CPU
llm_load_tensors: offloading 61 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 62/62 layers to GPU
llm_load_tensors:        CPU buffer size = 205716.00 MiB
llm_load_tensors:  CUDA_Host buffer size =   497.11 MiB
llm_load_tensors:      CUDA0 buffer size =  9885.95 MiB
....................................................................................................
============ llm_load_tensors: need to compute 61 wk_b tensors
/home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10624: /home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10624: /home/w/projects/ik_llama.cpp/ggml/src/ggml.
c:10624: GGML_ASSERT(dst->type == GGML_TYPE_F32) failed
/home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10624: GGML_ASSERT(dst->type == GGML_TYPE_F32) failed

I'll peep at the PR #265 diff, guessing an ASSERT in the code-path related to -ctk q8_0 -mla 2 on CPU is messing with computing wk_b tensors on the fly even for hybrid CPU+GPU inferencing.


💬 Conversation

👤 ikawrakow commented the 2025-03-20 at 04:35:11:

Yes, sorry, PR #265 broke it. But PR #269 is supposed to have fixed it. Based on the line number of the assert, the above is without #269.


👤 ikawrakow commented the 2025-03-20 at 04:35:11:

Yes, sorry, PR #265 broke it. But PR #269 is supposed t have fixed it. Based on the line number of the assert, the above is without #269.


👤 ubergarm commented the 2025-03-20 at 14:11:09:

Ahh I see that PR 269 was to fix it. I should have given you the output from tip of main. It seems like an issue persists after the fix?

$ ./build/bin/llama-server --version
version: 3597 (127c6ee6)
built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu

$ CUDA_VISIBLE_DEVICES="0," \
./build/bin/llama-server \
    --alias unsloth/DeepSeek-R1-UD_Q2_K_XL \
    --model /mnt/raid/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-UD-Q2_K_XL/DeepSeek-R1-UD-Q2_K_XL-00001-of-00005.gguf \
    -rtr \
    --ctx-size 65536 \
    -ctk q8_0 \
    -mla 2 -fa \
    -amb 512 \
    -fmoe \
    --n-gpu-layers 63 \
    --override-tensor exps=CPU \
    --parallel 1 \
    --threads 24 \
    --host 127.0.0.1 \
    --port 8080
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA RTX A6000, compute capability 8.6, VMM: yes
INFO [                    main] build info | tid="128132524249088" timestamp=1742479612 build=3597 commit="127c6ee6"
INFO [                    main] system info | tid="128132524249088" timestamp=1742479612 n_threads=24 n_threads_batch=-1 total_threads=48 system_info=
"AVX = 1 | AVX_VNNI = 0 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F
16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: additional 4 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 48 key-value pairs and 1025 tensors from /mnt/raid/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-UD-Q2_K_XL/De
epSeek-R1-UD-Q2_K_XL-00001-of-00005.gguf (version GGUF V3 (latest))
.
.
.
Tensor blk.60.ffn_gate_exps.weight buffer type overriden to CPU
Tensor blk.60.ffn_down_exps.weight buffer type overriden to CPU
Tensor blk.60.ffn_up_exps.weight buffer type overriden to CPU
llm_load_tensors: offloading 61 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 62/62 layers to GPU
llm_load_tensors:        CPU buffer size = 205716.00 MiB
llm_load_tensors:  CUDA_Host buffer size =   497.11 MiB
llm_load_tensors:      CUDA0 buffer size =  9885.95 MiB
....................................................................................................
============ llm_load_tensors: need to compute 61 wk_b tensors
/home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10629: /home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10629: GGML_ASSERT(dst->type == GGML_TYPE_F32) fail
ed
/home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10629: GGML_ASSERT(dst->type == GGML_TYPE_F32) failed
/home/w/projects/ik_llama.cpp/ggml/src/ggml.c:10629: GGML_ASSERT(dst->type == GGML_TYPE_F32) failed

👤 ikawrakow commented the 2025-03-20 at 14:15:05:

I guess I'm getting confused myself. Too many options to keep track of.

But I did put more effort into making copy/transpose/etc. work with quantized tensors in PR #272. Can you check if that works? Thanks!


👤 ubergarm commented the 2025-03-20 at 15:51:37:

Okay, repacked a quant using new feature from PR272 and now it runs successfully testing CPU only on the 6980P. So no need to -rtr anymore.

  1. The repacked quant branch and successfully computes wk_b tensors with repacked weights
  2. Allows for mmap() so things start up much quicker and potential huge pages stuff.
Full command and output log
$ git rev-parse --short HEAD
9fe6fc37

$ numactl -N 0 -m 0 \
./build/bin/llama-server \
    --alias repack/DeepSeek-R1-Q4_K_R4 \
    --model /mnt/ai/models/unsloth/repack/DeepSeek-R1-Q4_K_R4.gguf \
    --ctx-size 32768 \
    -ctk q8_0 \
    -mla 2 -fa \
    -amb 512 \
    -fmoe \
    --parallel 1 \
    --threads 128 \
    --numa numactl \
    --host 127.0.0.1 \
    --port 8080

INFO [                    main] build info | tid="135113007282112" timestamp=1742485327 build=3604 commit="9fe6fc37"
INFO [                    main] system info | tid="135113007282112" timestamp=1742485327 n_threads=128 n_threads_batch=-1 total_threads=512 system_inf
o="AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 |
 F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | "
llama_model_loader: loaded meta data with 45 key-value pairs and 1025 tensors from /mnt/ai/models/unsloth/repack/DeepSeek-R1-Q4_K_R4.gguf (version GGU
F V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 BF16
llama_model_loader: - kv   3:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   4:                         general.size_label str              = 256x20B
llama_model_loader: - kv   5:                           general.repo_url str              = https://huggingface.co/unsloth
.
.
.
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q4_K:    1 tensors
llama_model_loader: - type q4_k_r4:  605 tensors
llama_model_loader: - type q6_k_r4:   58 tensors
.
.
.
llm_load_tensors:        CPU buffer size = 385689.62 MiB
....................................................................................................
============ llm_load_tensors: need to compute 61 wk_b tensors
Computed blk.0.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.1.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
.
.
.
llama_kv_cache_init: layer 59: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 60: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init:        CPU KV buffer size =  1166.63 MiB
llama_new_context_with_model: KV self size  = 1166.62 MiB, c^KV (q8_0): 1166.62 MiB, kv^T: not used
llama_new_context_with_model:        CPU  output buffer size =     0.99 MiB
llama_new_context_with_model:        CPU compute buffer size =  2048.01 MiB
llama_new_context_with_model: graph nodes  = 8184
llama_new_context_with_model: graph splits = 1
.
.
.

Great, I'll try to repack the unsloth Q8_0 and see if that fixes every chunk throwing nan on llama-perplexity too.


👤 ikawrakow commented the 2025-03-20 at 16:04:58:

Great, I'll try to repack the unsloth Q8_0 and see if that fixes every chunk throwing nan on llama-perplexity too.

Are the NaNs ik_llama.cpp specific, or does also mainline produce NaNs with the Unsloth Q8_0 model?


👤 ubergarm commented the 2025-03-20 at 17:07:50:

Are the NaNs ik_llama.cpp specific, or does also mainline produce NaNs with the Unsloth Q8_0 model?

Yes, I got mainline llama.cpp@b1b132ef to give at a full clean llama-perplexity run with no NaNs with the same GGUF files:

mainline llama.cpp clean Q8_0 perplexity run
## llama.cpp mainline

$ git rev-parse --short head
b1b132ef

$ numactl -N 0 -m 0 \
./build/bin/llama-perplexity \
    --model /mnt/ai/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-Q8_0/DeepSeek-R1.Q8_0-00001-of-00015.gguf \
    -ctk f16 -ctv f16 \
    --ctx-size 512 \
    --ubatch-size 512 \
    -f wiki.test.raw \
    --numa numactl \
    --threads 80

build: 4905 (b1b132ef) with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
/proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance
llama_model_loader: additional 14 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 48 key-value pairs and 1025 tensors from /mnt/ai/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-Q8_0/DeepSeek-R1.Q8_0-00001-of-00015.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 BF16
llama_model_loader: - kv   3:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   4:                         general.size_label str              = 256x20B
llama_model_loader: - kv   5:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   6:                      deepseek2.block_count u32              = 61
llama_model_loader: - kv   7:                   deepseek2.context_length u32              = 163840
llama_model_loader: - kv   8:                 deepseek2.embedding_length u32              = 7168
llama_model_loader: - kv   9:              deepseek2.feed_forward_length u32              = 18432
llama_model_loader: - kv  10:             deepseek2.attention.head_count u32              = 128
llama_model_loader: - kv  11:          deepseek2.attention.head_count_kv u32              = 128
llama_model_loader: - kv  12:                   deepseek2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  13: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                deepseek2.expert_used_count u32              = 8
llama_model_loader: - kv  15:                          general.file_type u32              = 7
llama_model_loader: - kv  16:        deepseek2.leading_dense_block_count u32              = 3
llama_model_loader: - kv  17:                       deepseek2.vocab_size u32              = 129280
llama_model_loader: - kv  18:            deepseek2.attention.q_lora_rank u32              = 1536
llama_model_loader: - kv  19:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  20:             deepseek2.attention.key_length u32              = 192
llama_model_loader: - kv  21:           deepseek2.attention.value_length u32              = 128
llama_model_loader: - kv  22:       deepseek2.expert_feed_forward_length u32              = 2048
llama_model_loader: - kv  23:                     deepseek2.expert_count u32              = 256
llama_model_loader: - kv  24:              deepseek2.expert_shared_count u32              = 1
llama_model_loader: - kv  25:             deepseek2.expert_weights_scale f32              = 2.500000
llama_model_loader: - kv  26:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  27:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  28:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  29:                deepseek2.rope.scaling.type str              = yarn
llama_model_loader: - kv  30:              deepseek2.rope.scaling.factor f32              = 40.000000
llama_model_loader: - kv  31: deepseek2.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv  32: deepseek2.rope.scaling.yarn_log_multiplier f32              = 0.100000
llama_model_loader: - kv  33:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  34:                         tokenizer.ggml.pre str              = deepseek-v3
# remove tokenizer as characters mess up my copy/paste clipboard
llama_model_loader: - kv  38:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  39:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  40:            tokenizer.ggml.padding_token_id u32              = 128815
llama_model_loader: - kv  41:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  42:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  43:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  44:               general.quantization_version u32              = 2
llama_model_loader: - kv  45:                                   split.no u16              = 0
llama_model_loader: - kv  46:                                split.count u16              = 15
llama_model_loader: - kv  47:                        split.tensors.count i32              = 1025
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q8_0:  664 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q8_0
print_info: file size   = 664.29 GiB (8.50 BPW) 
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: special tokens cache size = 819
load: token to piece cache size = 0.8223 MB
print_info: arch             = deepseek2
print_info: vocab_only       = 0
print_info: n_ctx_train      = 163840
print_info: n_embd           = 7168
print_info: n_layer          = 61
print_info: n_head           = 128
print_info: n_head_kv        = 128
print_info: n_rot            = 64
print_info: n_swa            = 0
print_info: n_swa_pattern    = 1
print_info: n_embd_head_k    = 192
print_info: n_embd_head_v    = 128
print_info: n_gqa            = 1
print_info: n_embd_k_gqa     = 24576
print_info: n_embd_v_gqa     = 16384
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-06
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = 18432
print_info: n_expert         = 256
print_info: n_expert_used    = 8
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = 0
print_info: rope scaling     = yarn
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 0.025
print_info: n_ctx_orig_yarn  = 4096
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 0
print_info: ssm_d_inner      = 0
print_info: ssm_d_state      = 0
print_info: ssm_dt_rank      = 0
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = 671B
print_info: model params     = 671.03 B
print_info: general.name     = DeepSeek R1 BF16
print_info: n_layer_dense_lead   = 3
print_info: n_lora_q             = 1536
print_info: n_lora_kv            = 512
print_info: n_ff_exp             = 2048
print_info: n_expert_shared      = 1
print_info: expert_weights_scale = 2.5
print_info: expert_weights_norm  = 1
print_info: expert_gating_func   = sigmoid
print_info: rope_yarn_log_mul    = 0.1000
print_info: vocab type       = BPE
print_info: n_vocab          = 129280
print_info: n_merges         = 127741
print_info: BOS token        = 0 '<begin▁of▁sentence>'
print_info: EOS token        = 1 '<end▁of▁sentence>'
print_info: EOT token        = 1 '<end▁of▁sentence>'
print_info: PAD token        = 128815 '<PAD▁TOKEN>'
print_info: LF token         = 201 'Ċ'
print_info: FIM PRE token    = 128801 '<fim▁begin>'
print_info: FIM SUF token    = 128800 '<fim▁hole>'
print_info: FIM MID token    = 128802 '<fim▁end>'
print_info: EOG token        = 1 '<end▁of▁sentence>'
print_info: max token length = 256
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors:          AMX model buffer size = 18214.39 MiB
load_tensors:   CPU_Mapped model buffer size = 45565.90 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 46661.11 MiB
load_tensors:   CPU_Mapped model buffer size = 28077.60 MiB
....................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 4
llama_context: n_ctx         = 2048
llama_context: n_ctx_per_seq = 512
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = 0
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 0.025
llama_context: n_ctx_per_seq (512) < n_ctx_train (163840) -- the full capacity of the model will not be utilized
llama_context:        CPU  output buffer size =     1.97 MiB
init: kv_size = 2048, offload = 1, type_k = 'f16', type_v = 'f16', n_layer = 61, can_shift = 0
init:        CPU KV buffer size =  9760.00 MiB
llama_context: KV self size  = 9760.00 MiB, K (f16): 5856.00 MiB, V (f16): 3904.00 MiB
llama_context:        CPU compute buffer size =   670.01 MiB
llama_context: graph nodes  = 5025
llama_context: graph splits = 1
common_init_from_params: KV cache shifting is not supported for this context, disabling KV cache shifting
common_init_from_params: setting dry_penalty_last_n to ctx_size = 2048
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)

system_info: n_threads = 80 (n_threads_batch = 80) / 512 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | AMX_INT8 = 1 | LLAMAFILE = 1 | OPENMP = 1 | AARCH64_REPACK = 1 | 
perplexity: tokenizing the input ..
perplexity: tokenization took 724.131 ms
perplexity: calculating perplexity over 561 chunks, n_ctx=512, batch_size=2048, n_seq=4
perplexity: 60.35 seconds per pass - ETA 2 hours 21.05 minutes
[1]2.5013,[2]3.2882,[3]2.3700,[4]1.9826,[5]1.7891,[6]1.6469,[7]1.5544,[8]1.4883,[9]1.4387,[10]1.3997,[11]1.3842,[12]1.4194,[13]1.4299,[14]1.5576,[15]1.6890,[16]1.7483,[17]1.9110,[18]2.0408,[19]2.0033,[20]1.9911,[21]2.0982,[22]2.0702,[23]2.0430,[24]2.0560,[25]2.0267,[26]2.0035,[27]2.0524,[28]2.0598,[29]2.1085,[30]2.1396,[31]2.1742,[32]2.1918,[33]2.2304,[34]2.2706,[35]2.3192,[36]2.3717,[37]2.4071,[38]2.4526,[39]2.4940,[40]2.5527,[41]2.5950,[42]2.6072,[43]2.6559,[44]2.6723,[45]2.7517,[46]2.8023,[47]2.7573,[48]2.7107,[49]2.6842,[50]2.7039,[51]2.7504,[52]2.7650,[53]2.8143,[54]2.8275,[55]2.8585,[56]2.8898,[57]2.9036,[58]2.9402,[59]2.9512,[60]2.9968,[61]3.0366,[62]3.0894,[63]3.1213,[64]3.1652,[65]3.1751,[66]3.1579,[67]3.1353,[68]3.1665,[69]3.1618,[70]3.1771,[71]3.1956,[72]3.2115,[73]3.2259,[74]3.2494,[75]3.2284,[76]3.1816,[77]3.1389,[78]3.1344,[79]3.1122,[80]3.0929,[81]3.0561,[82]3.0596,[83]3.0282,[84]2.9923,[85]2.9572,[86]2.9321,[87]2.9257,[88]2.8971,[89]2.8805,[90]2.8542,[91]2.8245,[92]2.7997,[93]2.7731,[94]2.7463,[95]2.7224,[96]2.7210,[97]2.7283,[98]2.7132,[99]2.6960,[100]2.6985,[101]2.6899,[102]2.7065,[103]2.7327,[104]2.7513,[105]2.7482,[106]2.7706,[107]2.7948,[108]2.8154,[109]2.8493,[110]2.8832,[111]2.9028,[112]2.8771,[113]2.8641,[114]2.8419,[115]2.8266,[116]2.8114,[117]2.7885,[118]2.7677,[119]2.7465,[120]2.7277,[121]2.7122,[122]2.6947,[123]2.6785,[124]2.6597,[125]2.6422,[126]2.6257,[127]2.6117,[128]2.6027,[129]2.5920,[130]2.5797,[131]2.5724,[132]2.5798,[133]2.5894,[134]2.5959,[135]2.6064,[136]2.6225,[137]2.6379,[138]2.6461,[139]2.6576,[140]2.6586,[141]2.6603,[142]2.6594,[143]2.6599,[144]2.6569,[145]2.6481,[146]2.6467,[147]2.6512,[148]2.6510,[149]2.6527,[150]2.6476,[151]2.6458,[152]2.6429,[153]2.6392,[154]2.6399,[155]2.6443,[156]2.6465,[157]2.6527,[158]2.6615,[159]2.6634,[160]2.6723,[161]2.6806,[162]2.6900,[163]2.6941,[164]2.7141,[165]2.7378,[166]2.7551,[167]2.7673,[168]2.7915,[169]2.8139,[170]2.8354,[171]2.8586,[172]2.8427,[173]2.8264,[174]2.8128,[175]2.7995,[176]2.7872,[177]2.7756,[178]2.7630,[179]2.7493,[180]2.7532,[181]2.7671,[182]2.7822,[183]2.7970,[184]2.8112,[185]2.8216,[186]2.8381,[187]2.8534,[188]2.8675,[189]2.8782,[190]2.8785,[191]2.8859,[192]2.8899,[193]2.8950,[194]2.9146,[195]2.9234,[196]2.9368,[197]2.9468,[198]2.9513,[199]2.9570,[200]2.9566,[201]2.9717,[202]2.9671,[203]2.9724,[204]2.9760,[205]2.9759,[206]2.9785,[207]2.9874,[208]2.9970,[209]3.0063,[210]3.0069,[211]3.0022,[212]3.0021,[213]3.0097,[214]3.0116,[215]3.0174,[216]3.0180,[217]3.0140,[218]3.0142,[219]3.0152,[220]3.0146,[221]3.0148,[222]3.0149,[223]3.0155,[224]3.0205,[225]3.0224,[226]3.0144,[227]3.0122,[228]3.0145,[229]3.0191,[230]3.0256,[231]3.0318,[232]3.0236,[233]3.0158,[234]3.0158,[235]3.0142,[236]3.0230,[237]3.0315,[238]3.0410,[239]3.0508,[240]3.0601,[241]3.0713,[242]3.0857,[243]3.0992,[244]3.1073,[245]3.1183,[246]3.1288,[247]3.1276,[248]3.1235,[249]3.1216,[250]3.1154,[251]3.1133,[252]3.1158,[253]3.1196,[254]3.1267,[255]3.1331,[256]3.1369,[257]3.1393,[258]3.1405,[259]3.1438,[260]3.1459,[261]3.1473,[262]3.1465,[263]3.1522,[264]3.1545,[265]3.1550,[266]3.1568,[267]3.1597,[268]3.1634,[269]3.1665,[270]3.1659,[271]3.1644,[272]3.1577,[273]3.1576,[274]3.1507,[275]3.1399,[276]3.1291,[277]3.1308,[278]3.1410,[279]3.1472,[280]3.1551,[281]3.1625,[282]3.1687,[283]3.1751,[284]3.1818,[285]3.1954,[286]3.1979,[287]3.2013,[288]3.2060,[289]3.2087,[290]3.2005,[291]3.1911,[292]3.1892,[293]3.1883,[294]3.1855,[295]3.1829,[296]3.1848,[297]3.1853,[298]3.1902,[299]3.1961,[300]3.1992,[301]3.2030,[302]3.2052,[303]3.2072,[304]3.2067,[305]3.2186,[306]3.2261,[307]3.2370,[308]3.2258,[309]3.2204,[310]3.2109,[311]3.2145,[312]3.2167,[313]3.2230,[314]3.2251,[315]3.2283,[316]3.2297,[317]3.2315,[318]3.2321,[319]3.2324,[320]3.2367,[321]3.2370,[322]3.2390,[323]3.2454,[324]3.2463,[325]3.2516,[326]3.2563,[327]3.2604,[328]3.2634,[329]3.2652,[330]3.2715,[331]3.2752,[332]3.2800,[333]3.2786,[334]3.2787,[335]3.2792,[336]3.2794,[337]3.2805,[338]3.2808,[339]3.2835,[340]3.2871,[341]3.2925,[342]3.3015,[343]3.3108,[344]3.3161,[345]3.3074,[346]3.2997,[347]3.2945,[348]3.2872,[349]3.2835,[350]3.2817,[351]3.2864,[352]3.3013,[353]3.3104,[354]3.3232,[355]3.3318,[356]3.3371,[357]3.3487,[358]3.3583,[359]3.3615,[360]3.3680,[361]3.3772,[362]3.3858,[363]3.3915,[364]3.3981,[365]3.4044,[366]3.4148,[367]3.4234,[368]3.4301,[369]3.4380,[370]3.4465,[371]3.4602,[372]3.4689,[373]3.4722,[374]3.4758,[375]3.4808,[376]3.4936,[377]3.5048,[378]3.5075,[379]3.5069,[380]3.5037,[381]3.5083,[382]3.5139,[383]3.5175,[384]3.5218,[385]3.5257,[386]3.5319,[387]3.5377,[388]3.5411,[389]3.5308,[390]3.5213,[391]3.5107,[392]3.5051,[393]3.4955,[394]3.4865,[395]3.4772,[396]3.4672,[397]3.4584,[398]3.4488,[399]3.4385,[400]3.4296,[401]3.4196,[402]3.4093,[403]3.4007,[404]3.3905,[405]3.3811,[406]3.3711,[407]3.3619,[408]3.3531,[409]3.3446,[410]3.3386,[411]3.3392,[412]3.3345,[413]3.3363,[414]3.3385,[415]3.3353,[416]3.3351,[417]3.3375,[418]3.3317,[419]3.3332,[420]3.3308,[421]3.3298,[422]3.3312,[423]3.3304,[424]3.3346,[425]3.3341,[426]3.3346,[427]3.3335,[428]3.3360,[429]3.3378,[430]3.3406,[431]3.3413,[432]3.3403,[433]3.3366,[434]3.3366,[435]3.3289,[436]3.3226,[437]3.3185,[438]3.3167,[439]3.3134,[440]3.3183,[441]3.3237,[442]3.3311,[443]3.3293,[444]3.3302,[445]3.3315,[446]3.3363,[447]3.3396,[448]3.3421,[449]3.3452,[450]3.3490,[451]3.3520,[452]3.3540,[453]3.3557,[454]3.3543,[455]3.3564,[456]3.3567,[457]3.3594,[458]3.3646,[459]3.3653,[460]3.3654,[461]3.3622,[462]3.3659,[463]3.3732,[464]3.3785,[465]3.3714,[466]3.3696,[467]3.3677,[468]3.3688,[469]3.3658,[470]3.3631,[471]3.3634,[472]3.3640,[473]3.3632,[474]3.3624,[475]3.3635,[476]3.3619,[477]3.3610,[478]3.3617,[479]3.3633,[480]3.3660,[481]3.3620,[482]3.3654,[483]3.3646,[484]3.3682,[485]3.3746,[486]3.3775,[487]3.3812,[488]3.3864,[489]3.3889,[490]3.3935,[491]3.3997,[492]3.4042,[493]3.4040,[494]3.4052,[495]3.4076,[496]3.4095,[497]3.4124,[498]3.4127,[499]3.4122,[500]3.4163,[501]3.4209,[502]3.4200,[503]3.4185,[504]3.4205,[505]3.4239,[506]3.4323,[507]3.4350,[508]3.4385,[509]3.4312,[510]3.4254,[511]3.4188,[512]3.4142,[513]3.4080,[514]3.4065,[515]3.4084,[516]3.4033,[517]3.4032,[518]3.4024,[519]3.4029,[520]3.4073,[521]3.4062,[522]3.4047,[523]3.4105,[524]3.4092,[525]3.4076,[526]3.4028,[527]3.3979,[528]3.3942,[529]3.3913,[530]3.3883,[531]3.3852,[532]3.3797,[533]3.3735,[534]3.3692,[535]3.3700,[536]3.3728,[537]3.3759,[538]3.3785,[539]3.3812,[540]3.3865,[541]3.3898,[542]3.3922,[543]3.3865,[544]3.3822,[545]3.3819,[546]3.3753,[547]3.3688,[548]3.3624,[549]3.3557,[550]3.3497,[551]3.3436,[552]3.3378,[553]3.3319,[554]3.3298,[555]3.3283,[556]3.3311,[557]3.3351,[558]3.3410,[559]3.3455,[560]3.3508,[561]3.3490,
Final estimate: PPL = 3.3490 +/- 0.01849

llama_perf_context_print:        load time =  226439.86 ms
llama_perf_context_print: prompt eval time = 8320298.42 ms / 287232 tokens (   28.97 ms per token,    34.52 tokens per second)
llama_perf_context_print:        eval time =       0.00 ms /     1 runs   (    0.00 ms per token,      inf tokens per second)
llama_perf_context_print:       total time = 8511632.28 ms / 287233 tokens

I tried a few combinations of sha's with and without -rtr, -mla 1, exact same command as mainline llama.cpp above, etc, but always getting NaNs with ik_llama.cpp so far:

ik_llama.cpp NaNs on same quant
## ik_llama.cpp@f2fb15de

$ numactl -N 0 -m 0 \
./build/bin/llama-perplexity \
    --model /mnt/ai/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-Q8_0/DeepSeek-R1.Q8_0-00001-of-00015.gguf \
    -rtr \
    -ctk f16 -ctv f16 \
    -mla 2 -fa \
    -amb 2048 \
    -fmoe \
    --ctx-size 512 \
    --ubatch-size 512 \
    -f wiki.test.raw \
    --numa numactl \
    --threads 80

main: build = 3596 (f2fb15de)
main: built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
main: seed  = 1742247516
llama_model_loader: additional 14 GGUFs metadata loaded.
llama_model_loader: loaded meta data with 48 key-value pairs and 1025 tensors from /mnt/ai/models/unsloth/DeepSeek-R1-GGUF/DeepSeek-R1-Q8_0/DeepSeek-R1.Q8_0-00001-of-00015.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 BF16
llama_model_loader: - kv   3:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   4:                         general.size_label str              = 256x20B
llama_model_loader: - kv   5:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   6:                      deepseek2.block_count u32              = 61
llama_model_loader: - kv   7:                   deepseek2.context_length u32              = 163840
llama_model_loader: - kv   8:                 deepseek2.embedding_length u32              = 7168
llama_model_loader: - kv   9:              deepseek2.feed_forward_length u32              = 18432
llama_model_loader: - kv  10:             deepseek2.attention.head_count u32              = 128
llama_model_loader: - kv  11:          deepseek2.attention.head_count_kv u32              = 128
llama_model_loader: - kv  12:                   deepseek2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  13: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                deepseek2.expert_used_count u32              = 8
llama_model_loader: - kv  15:                          general.file_type u32              = 7
llama_model_loader: - kv  16:        deepseek2.leading_dense_block_count u32              = 3
llama_model_loader: - kv  17:                       deepseek2.vocab_size u32              = 129280
llama_model_loader: - kv  18:            deepseek2.attention.q_lora_rank u32              = 1536
llama_model_loader: - kv  19:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  20:             deepseek2.attention.key_length u32              = 192
llama_model_loader: - kv  21:           deepseek2.attention.value_length u32              = 128
llama_model_loader: - kv  22:       deepseek2.expert_feed_forward_length u32              = 2048
llama_model_loader: - kv  23:                     deepseek2.expert_count u32              = 256
llama_model_loader: - kv  24:              deepseek2.expert_shared_count u32              = 1
llama_model_loader: - kv  25:             deepseek2.expert_weights_scale f32              = 2.500000
llama_model_loader: - kv  26:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  27:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  28:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  29:                deepseek2.rope.scaling.type str              = yarn
llama_model_loader: - kv  30:              deepseek2.rope.scaling.factor f32              = 40.000000
llama_model_loader: - kv  31: deepseek2.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv  32: deepseek2.rope.scaling.yarn_log_multiplier f32              = 0.100000
llama_model_loader: - kv  33:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  34:                         tokenizer.ggml.pre str              = deepseek-v3
# comment out tokenzier stuff for my poor clipboard
llama_model_loader: - kv  38:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  39:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  40:            tokenizer.ggml.padding_token_id u32              = 128815
llama_model_loader: - kv  41:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  42:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  43:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  44:               general.quantization_version u32              = 2
llama_model_loader: - kv  45:                                   split.no u16              = 0
llama_model_loader: - kv  46:                                split.count u16              = 15
llama_model_loader: - kv  47:                        split.tensors.count i32              = 1025
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q8_0:  664 tensors
llm_load_vocab: special tokens cache size = 819
llm_load_vocab: token to piece cache size = 0.8223 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = deepseek2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 129280
llm_load_print_meta: n_merges         = 127741
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 163840
llm_load_print_meta: n_embd           = 7168
llm_load_print_meta: n_layer          = 61
llm_load_print_meta: n_head           = 128
llm_load_print_meta: n_head_kv        = 128
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 192
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 24576
llm_load_print_meta: n_embd_v_gqa     = 16384
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 18432
llm_load_print_meta: n_expert         = 256
llm_load_print_meta: n_expert_used    = 8
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = yarn
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 0.025
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 671B
llm_load_print_meta: model ftype      = Q8_0
llm_load_print_meta: model params     = 671.026 B
llm_load_print_meta: model size       = 664.295 GiB (8.504 BPW) 
llm_load_print_meta: repeating layers = 662.461 GiB (8.504 BPW, 669.173 B parameters)
llm_load_print_meta: general.name     = DeepSeek R1 BF16
llm_load_print_meta: BOS token        = 0 '<begin▁of▁sentence>'
llm_load_print_meta: EOS token        = 1 '<end▁of▁sentence>'
llm_load_print_meta: PAD token        = 128815 '<PAD▁TOKEN>'
llm_load_print_meta: LF token         = 131 'Ä'
llm_load_print_meta: max token length = 256
llm_load_print_meta: n_layer_dense_lead   = 3
llm_load_print_meta: n_lora_q             = 1536
llm_load_print_meta: n_lora_kv            = 512
llm_load_print_meta: n_ff_exp             = 2048
llm_load_print_meta: n_expert_shared      = 1
llm_load_print_meta: expert_weights_scale = 2.5
llm_load_print_meta: expert_weights_norm  = 1
llm_load_print_meta: expert_gating_func   = sigmoid
llm_load_print_meta: rope_yarn_log_mul    = 0.1000
llm_load_tensors: ggml ctx size =    0.42 MiB
llm_load_tensors:        CPU buffer size = 680237.97 MiB
....................................................................................................
============ llm_load_tensors: need to compute 61 wk_b tensors
WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance
Computed blk.0.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.1.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.2.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.3.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.4.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.5.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.6.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.7.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.8.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.9.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.10.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.11.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.12.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.13.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.14.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.15.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.16.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.17.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.18.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.19.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.20.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.21.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.22.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.23.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.24.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.25.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.26.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.27.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.28.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.29.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.30.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.31.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.32.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.33.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.34.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.35.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.36.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.37.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.38.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.39.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.40.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.41.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.42.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.43.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.44.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.45.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.46.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.47.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.48.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.49.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.50.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.51.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.52.attn_v_b.weight as 128 x 512 x 128 and sllama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: mla_attn   = 2
llama_new_context_with_model: attn_max_b = 2048
llama_new_context_with_model: fused_moe  = 1
llama_new_context_with_model: ser        = -1, 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 0.025
llama_kv_cache_init: layer 0: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 1: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 2: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 3: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 4: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 5: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 6: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 7: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 8: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 9: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 10: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 11: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 12: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 13: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 14: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 15: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 16: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 17: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 18: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 19: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 20: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 21: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 22: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 23: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 24: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 25: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 26: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 27: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 28: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 29: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 30: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 31: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 32: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 33: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 34: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 35: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 36: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 37: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 38: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 39: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 40: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 41: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 42: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 43: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 44: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 45: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 46: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 47: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 48: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 49: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 50: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 51: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 52: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 53: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 54: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 55: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 56: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 57: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 58: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 59: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 60: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init:        CPU KV buffer size =   137.25 MiB
llama_new_context_with_model: KV self size  =  137.25 MiB, c^KV (f16):  137.25 MiB, kv^T: not used
llama_new_context_with_model:        CPU  output buffer size =     1.97 MiB
llama_new_context_with_model:        CPU compute buffer size =   432.01 MiB
llama_new_context_with_model: graph nodes  = 3365
llama_new_context_with_model: graph splits = 1

system_info: n_threads = 80 / 512 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
perplexity: tokenizing the input ..
perplexity: tokenization took 912.853 ms
perplexity: calculating perplexity over 561 chunks, n_ctx=512, batch_size=2048, n_seq=4
perplexity: 21.11 seconds per pass - ETA 49.35 minutes
tored in buffer CPU
Computed blk.53.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.54.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.55.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.56.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.57.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.58.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.59.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.60.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
============ Repacked 663 tensors
[1]nan,[2]nan,[3]nan,[4]nan,[5]nan,[6]nan,[7]nan,[8]nan,[9]nan,[10]nan,[11]nan,[12]nan,[13]nan,[14]nan,[15]nan,[16]nan,[17]nan,[18]nan,[19]nan,[20]nan,[21]nan,[22]nan,[23]nan,[24]nan,[25]nan,[26]nan,[27]nan,[28]nan,[29]nan,[30]nan,[31]nan,[32]nan,[33]nan,[34]nan,[35]nan,[36]nan,[37]nan,[38]nan,[39]nan,[40]nan,[41]nan,[42]nan,[43]nan,[44]nan,[45]nan,[46]nan,[47]nan,[48]nan,[49]nan,[50]nan,[51]nan,[52]nan,[53]nan,[54]nan,[55]nan,[56]nan,[57]nan,[58]nan,[59]nan,[60]nan,[61]nan,[62]nan,[63]nan,[64]nan,

Trying one more time with todays updates and an offline repacked quant:

Trying `ik_llama.cpp@9fe6fc37` with offline repacked quant
$ git checkout ik/offline_repack

$ git rev-parse --short HEAD
9fe6fc37

$ numactl -N 0 -m 0 \
./build/bin/llama-perplexity \
    --model /mnt/ai/models/unsloth/repack/DeepSeek-R1-Q8_0_R8.gguf \
    -ctk q8_0 \
    -mla 2 -fa \
    -amb 512 \
    -fmoe \
    --ctx-size 512 \
    --ubatch-size 512 \
    -f wiki.test.raw \
    --seed 1337 \
    --numa numactl \
    --threads 128

main: build = 3604 (9fe6fc37)
main: built with cc (Ubuntu 13.3.0-6ubuntu2~24.04) 13.3.0 for x86_64-linux-gnu
main: seed  = 1337
llama_model_loader: loaded meta data with 45 key-value pairs and 1025 tensors from /mnt/ai/models/unsloth/repack/DeepSeek-R1-Q8_0_R8.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = deepseek2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = DeepSeek R1 BF16
llama_model_loader: - kv   3:                       general.quantized_by str              = Unsloth
llama_model_loader: - kv   4:                         general.size_label str              = 256x20B
llama_model_loader: - kv   5:                           general.repo_url str              = https://huggingface.co/unsloth
llama_model_loader: - kv   6:                      deepseek2.block_count u32              = 61
llama_model_loader: - kv   7:                   deepseek2.context_length u32              = 163840
llama_model_loader: - kv   8:                 deepseek2.embedding_length u32              = 7168
llama_model_loader: - kv   9:              deepseek2.feed_forward_length u32              = 18432
llama_model_loader: - kv  10:             deepseek2.attention.head_count u32              = 128
llama_model_loader: - kv  11:          deepseek2.attention.head_count_kv u32              = 128
llama_model_loader: - kv  12:                   deepseek2.rope.freq_base f32              = 10000.000000
llama_model_loader: - kv  13: deepseek2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                deepseek2.expert_used_count u32              = 8
llama_model_loader: - kv  15:                          general.file_type u32              = 207
llama_model_loader: - kv  16:        deepseek2.leading_dense_block_count u32              = 3
llama_model_loader: - kv  17:                       deepseek2.vocab_size u32              = 129280
llama_model_loader: - kv  18:            deepseek2.attention.q_lora_rank u32              = 1536
llama_model_loader: - kv  19:           deepseek2.attention.kv_lora_rank u32              = 512
llama_model_loader: - kv  20:             deepseek2.attention.key_length u32              = 192
llama_model_loader: - kv  21:           deepseek2.attention.value_length u32              = 128
llama_model_loader: - kv  22:       deepseek2.expert_feed_forward_length u32              = 2048
llama_model_loader: - kv  23:                     deepseek2.expert_count u32              = 256
llama_model_loader: - kv  24:              deepseek2.expert_shared_count u32              = 1
llama_model_loader: - kv  25:             deepseek2.expert_weights_scale f32              = 2.500000
llama_model_loader: - kv  26:              deepseek2.expert_weights_norm bool             = true
llama_model_loader: - kv  27:               deepseek2.expert_gating_func u32              = 2
llama_model_loader: - kv  28:             deepseek2.rope.dimension_count u32              = 64
llama_model_loader: - kv  29:                deepseek2.rope.scaling.type str              = yarn
llama_model_loader: - kv  30:              deepseek2.rope.scaling.factor f32              = 40.000000
llama_model_loader: - kv  31: deepseek2.rope.scaling.original_context_length u32              = 4096
llama_model_loader: - kv  32: deepseek2.rope.scaling.yarn_log_multiplier f32              = 0.100000
llama_model_loader: - kv  33:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  34:                         tokenizer.ggml.pre str              = deepseek-v3
llama_model_loader: - kv  38:                tokenizer.ggml.bos_token_id u32              = 0
llama_model_loader: - kv  39:                tokenizer.ggml.eos_token_id u32              = 1
llama_model_loader: - kv  40:            tokenizer.ggml.padding_token_id u32              = 128815
llama_model_loader: - kv  41:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  42:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  43:                    tokenizer.chat_template str              = {% if not add_generation_prompt is de...
llama_model_loader: - kv  44:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  361 tensors
llama_model_loader: - type q8_0:    1 tensors
llama_model_loader: - type q8_0_r8:  663 tensors
llm_load_vocab: special tokens cache size = 819
llm_load_vocab: token to piece cache size = 0.8223 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = deepseek2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 129280
llm_load_print_meta: n_merges         = 127741
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 163840
llm_load_print_meta: n_embd           = 7168
llm_load_print_meta: n_layer          = 61
llm_load_print_meta: n_head           = 128
llm_load_print_meta: n_head_kv        = 128
llm_load_print_meta: n_rot            = 64
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 192
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 24576
llm_load_print_meta: n_embd_v_gqa     = 16384
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 18432
llm_load_print_meta: n_expert         = 256
llm_load_print_meta: n_expert_used    = 8
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = yarn
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 0.025
llm_load_print_meta: n_ctx_orig_yarn  = 4096
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 671B
llm_load_print_meta: model ftype      = Q8_0_R8 - 8.5 bpw
llm_load_print_meta: model params     = 671.026 B
llm_load_print_meta: model size       = 664.295 GiB (8.504 BPW) 
llm_load_print_meta: repeating layers = 662.461 GiB (8.504 BPW, 669.173 B parameters)
llm_load_print_meta: general.name     = DeepSeek R1 BF16
llm_load_print_meta: BOS token        = 0 '<begin▁of▁sentence>'
llm_load_print_meta: EOS token        = 1 '<end▁of▁sentence>'
llm_load_print_meta: PAD token        = 128815 '<PAD▁TOKEN>'
llm_load_print_meta: LF token         = 131 'Ä'
llm_load_print_meta: max token length = 256
llm_load_print_meta: n_layer_dense_lead   = 3
llm_load_print_meta: n_lora_q             = 1536
llm_load_print_meta: n_lora_kv            = 512
llm_load_print_meta: n_ff_exp             = 2048
llm_load_print_meta: n_expert_shared      = 1
llm_load_print_meta: expert_weights_scale = 2.5
llm_load_print_meta: expert_weights_norm  = 1
llm_load_print_meta: expert_gating_func   = sigmoid
llm_load_print_meta: rope_yarn_log_mul    = 0.1000
llm_load_tensors: ggml ctx size =    0.42 MiB
llm_load_tensors:        CPU buffer size = 680237.97 MiB
....................................................................................................
============ llm_load_tensors: need to compute 61 wk_b tensors
Computed blk.0.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.1.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.2.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.3.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.4.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.5.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.6.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.7.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.8.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.9.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.10.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.11.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.12.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.13.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.14.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.15.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.16.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.17.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.18.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.19.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.20.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.21.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.22.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.23.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.24.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.25.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.26.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.27.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.28.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.29.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.30.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.31.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.32.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.33.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.34.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.35.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.36.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.37.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.38.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.39.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.40.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.41.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.42.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.43.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.44.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.45.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.46.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.47.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.48.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.49.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.50.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.51.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.52.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.53.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Collama_new_context_with_model: n_ctx      = 2048
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: mla_attn   = 2
llama_new_context_with_model: attn_max_b = 512
llama_new_context_with_model: fused_moe  = 1
llama_new_context_with_model: ser        = -1, 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 0.025
llama_kv_cache_init: layer 0: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 1: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 2: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 3: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 4: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 5: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 6: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 7: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 8: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 9: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 10: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 11: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 12: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 13: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 14: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 15: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 16: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 17: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 18: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 19: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 20: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 21: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 22: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 23: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 24: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 25: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 26: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 27: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 28: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 29: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 30: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 31: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 32: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 33: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 34: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 35: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 36: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 37: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 38: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 39: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 40: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 41: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 42: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 43: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 44: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 45: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 46: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 47: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 48: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 49: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 50: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 51: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 52: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 53: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 54: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 55: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 56: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 57: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 58: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 59: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init: layer 60: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init:        CPU KV buffer size =    72.91 MiB
llama_new_context_with_model: KV self size  =   72.91 MiB, c^KV (q8_0):   72.91 MiB, kv^T: not used
llama_new_context_with_model:        CPU  output buffer size =     1.97 MiB
llama_new_context_with_model:        CPU compute buffer size =   450.01 MiB
llama_new_context_with_model: graph nodes  = 3487
llama_new_context_with_model: graph splits = 1

system_info: n_threads = 128 / 512 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 
perplexity: tokenizing the input ..
perplexity: tokenization took 1752.8 ms
perplexity: calculating perplexity over 561 chunks, n_ctx=512, batch_size=2048, n_seq=4
perplexity: 15.91 seconds per pass - ETA 37.20 minutes
mputed blk.54.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.55.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.56.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.57.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.58.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.59.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.60.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
[1]nan,[2]nan,[3]nan,[4]nan,[5]nan,[6]nan,[7]nan,[8]nan,[9]nan,[10]nan,[11]nan,[12]nan,[13]nan,[14]nan,[15]nan,[16]nan,[17]nan,[18]nan,[19]nan,[20]nan,[21]nan,[22]nan,[23]nan,[24]nan,[25]nan,[26]nan,[27]nan,[28]nan,

Happy to open a new ticket and copy paste this over there if that makes it easier to track.

Thanks, I'm enjoying all these great features!


👤 ikawrakow commented the 2025-03-21 at 13:08:46:

The Computed ... and stored in buffer CPU messages are appearing after the perplexity calculation has already started. Is this a race (I'm missing a synchronization somewhere)? Or is it a matter of I/O buffering because I just use printf while the other messages are output via LLAMA_LOG_INFO? If it is the former (race), this would explain the NaNs (calculation starts before the necessary tensors are ready, and it is enough to get one NaN to have all batches be NaN as the result being output is the cumulative result, not the result of the batch alone).


👤 ubergarm commented the 2025-03-21 at 15:45:57:

Ohh I see what you're saying now. It looks like perplexity calculations have already started but it is still printing out Computed ......

fwiw I'm redirecting stderr to stdout and piping it into tee to save logs and view output:

trimmed example logs
$ ./myscripts/perplexity.sh 2>&1 | tee -a  logs/perplexity-R1-Q8_0_R8-ik-llama-9fe6fc37.log
.
.
.
llama_kv_cache_init: layer 60: n_embd_head_qk_rope = 64, kv_lora_rank = 512
llama_kv_cache_init:        CPU KV buffer size =    72.91 MiB
llama_new_context_with_model: KV self size  =   72.91 MiB, c^KV (q8_0):   72.91 MiB, kv^T: not used
llama_new_context_with_model:        CPU  output buffer size =     1.97 MiB
llama_new_context_with_model:        CPU compute buffer size =   450.01 MiB
llama_new_context_with_model: graph nodes  = 3487
llama_new_context_with_model: graph splits = 1

system_info: n_threads = 128 / 512 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 1 | AVX512_VBMI = 1 | AVX512_VNNI = 1 | AVX512_BF16 = 1 | FMA = 1 | NEON = 0 | SVE = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 |
perplexity: tokenizing the input ..
perplexity: tokenization took 980.309 ms
perplexity: calculating perplexity over 561 chunks, n_ctx=512, batch_size=2048, n_seq=4
perplexity: 15.59 seconds per pass - ETA 36.45 minutes
mputed blk.54.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.55.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.56.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.57.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.58.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.59.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
Computed blk.60.attn_v_b.weight as 128 x 512 x 128 and stored in buffer CPU
[1]nan,[2]nan,[3]nan,[4]nan,[5]nan,[6]nan,[7]nan,[8]nan,[9]nan,[10]nan,[11]nan,[12]nan,[13]nan,[14]nan,[15]nan,[16]nan,^C^C

So right could test this possibly by:

  1. flushing stderr/stdout after each printf
  2. having some synchronization flag e.g. isTensorsReady that is set after finishing computing and storing in buffer. Then make perplexity calculations spin waiting for isTensorsReady...

Ima setup a new quant cooking on the threadripper then get into the 6980P and look at that more closely this morning


👤 ikawrakow commented the 2025-03-24 at 17:48:22:

I think this is solved now, but I keep it open because of the reported NaNs for Unsloth's Q8_0 model. I guess it would be better to close it and open a new issue about the Q8_0 NaNs.


👤 ubergarm commented the 2025-03-24 at 17:58:47:

Thanks, yes feel free to close this and I will create a new issue specific to the Q8_0 NaNs.

Getting side-tracked today with the new https://huggingface.co/deepseek-ai/DeepSeek-V3-0324 haha...