Files
ik_llama.cpp/github-data/pull_requests/112 - Faster MoE inference.md
2025-07-23 13:31:53 +02:00

1.7 KiB

🔀 #112 - Faster MoE inference

Author ikawrakow
State Closed
Created 2024-10-31
Updated 2025-06-23

Description

This PR

  • Adds a new op GGML_MULTI_ADD used to sum up the contributions of the selected experts. It results in, e.g., a 7% improvement of token generation speed for Granite-1B-MoE on CUDA (RTX-4080).
  • Fixes a massive inefficiency in the Metal implementation of MoE matrix multiplications (kernel_mul_mm_id). This leads to a nearly 6-fold prompt processing speedup for Granite-1B-MoE on Metal. But even for a much larger model such as Mixtral-8x7B the speedup is nearly a factor of 2 compared to current mainline llama.cpp (build: 8f275a7c (3989)).

💬 Conversation

👤 Nexesenex commented the 2025-06-23 at 12:59:59:

Hey IK.

    if (n_expert_used == 1) {
        return ggml_cont(ctx, ggml_view_2d(ctx, experts, n_embd, n_tokens, experts->nb[2], 0));
    }
    if (n_expert_used == 2) {
        return ggml_add(ctx, ggml_view_2d(ctx, experts, n_embd, n_tokens, experts->nb[2], 0),
                             ggml_view_2d(ctx, experts, n_embd, n_tokens, experts->nb[2], experts->nb[1]));
    }
    return ggml_multi_add(ctx, ggml_view_2d(ctx, experts, n_embd, n_tokens, experts->nb[2], 0), n_expert_used);

What of the case if expert_used >= 3?

For example, on Mistral 8x22b, there's a perplexity benefit to use 3 experts instead of 2 (-2% PPL 512).


👤 Nexesenex commented the 2025-06-23 at 13:08:58:

Oh silly me, I just read too fast the code, I understand now. Sorry!