Files
ik_llama.cpp/examples/server/function_calls.md
Anton Sokolchenko 9ee72225dc Function calling support for Kimi-K2 (#628)
* Implement function calling / tools for ik_llama.cpp for Kimi K2

* Implement basic tool choice

* Backport llama.cpp tool calls support

* Enhance function calls with improved chat parser and string utilities

- Add new chat.h/chat.cpp and chat-parser.h/chat-parser.cpp for better chat handling
- Improve function calls parsing with fallback to llama.cpp builder pattern
- Add string utility functions (starts_with, ends_with, find_partial_stop)
- Update README with function calls testing instructions
- Enhance Kimi K2 parser and function calls documentation
- Add comprehensive test suite for function calls
- Update CMakeLists.txt and Makefile for new components

* Enhance function calling with unified streaming and parser improvements

- Fix streaming content cleanup to prevent function syntax in output
- Unify content extraction patterns with llama.cpp approach
- Improve Kimi K2 parser robustness and partial content handling
- Add comprehensive test coverage for function call scenarios
- Optimize chat message parsing and diff computation

* Replace hardcoded values in kimi_k2_parser.hpp with named constants

- Add compile-time constants for all token format markers
- Add compile-time constants for XML format markers
- Add compile-time constants for simple format patterns
- Replace all hardcoded string literals with named constants
- Use compile-time length calculation to avoid manual counting
- Improve maintainability and reduce magic numbers throughout parser

* Fix duplicate common_chat_parse definition

- Remove duplicate implementation from chat-parser.cpp
- Keep single implementation in chat.cpp following llama.cpp patterns
- Resolves linker error: multiple definition of common_chat_parse

* Fix JSON assertion failure in function call parsing

- Add proper validation that 'function' field is an object before accessing nested keys
- Handle missing 'arguments' field gracefully with default "{}"
- Prevents crash when parsing malformed tool call JSON structures

* Add comprehensive Qwen3 XML tool calling support with unit tests

- Implement Qwen3 XML parser with <tool_call>{"name": "func", "arguments": {...}}</tool_call> format
- Add model detection and routing for Qwen3 vs Kimi-K2 formats
- Create 8 comprehensive unit tests covering parsing, streaming, error handling
- Fix token format cleaning bug in kimi_k2_parser.hpp processing order
- Remove progressive parsing code and related utilities
- Add tool injection support for Qwen3 format in server utils

* Add DeepSeek R1 function calling support with comprehensive unit tests

- Implement complete DeepSeek R1 tool call parsing in common_chat_parser.cpp
- Add DeepSeek R1 model detection and tool injection in deepseek_r1_tools.hpp
- Update function_calls.hpp with DeepSeek R1 integration and content extraction
- Update documentation to reflect support for Kimi-K2, Qwen3, and DeepSeek R1 models
- Add comprehensive unit tests for DeepSeek R1 reasoning, tool calls, and integration
- Port exact implementation patterns from original llama.cpp for compatibility

Key features:
- Native DeepSeek R1 format: <|tool▁calls▁begin|>function<|tool▁sep|>name```json{}```<|tool▁call▁end|><|tool▁calls▁end|>
- Reasoning content extraction from <think>...</think> tags
- Multiple tool calls support with separate call blocks
- Model detection for deepseek-r1, deepseek_r1 naming patterns
- Integration with incremental parsing and streaming support

* Add partial parsing support for JSON and regex

- json-partial.h/cpp: JSON partial parsing functionality
- regex-partial.h/cpp: Regex partial parsing functionality

* Add format_chat integration tests for Qwen3 tool injection

- Add test_qwen3_format_chat_integration() to validate tool injection pipeline
- Test tool injection conditions and system message enhancement
- Verify JSON formatting and anti-preamble instructions
- Add comprehensive test documentation

Tests confirm tool injection works correctly - conversational preamble
issue is not in ik_llama.cpp but likely in UI configuration.

* Fix Qwen3 tool call parsing - pass model name to parser

Server was not passing model name to parse_chat_message_incremental(),
causing Qwen3 to fall back to Kimi-K2 parser and return tool calls
as content instead of proper tool_calls array.

* Fix non-streaming path to use model-specific parsing

Non-streaming responses were hardcoded to use Kimi-K2 format,
causing Qwen3 XML tool calls to be returned as content instead
of proper tool_calls array. Now uses same model detection as
streaming path for consistency.
2025-07-23 18:11:42 +02:00

5.4 KiB
Raw Blame History

Function Calling Support

This document describes the function calling format supported by the ik_llama.cpp server implementation.

Overview

The server supports multiple native function calling formats including Kimi-K2, Qwen3 (XML), and DeepSeek R1. All function calls are automatically detected and converted to OpenAI-compatible responses.

⚠️ Model Requirements: Function calling support is enabled for the following model types:

  • Kimi-K2 models: Models containing "kimi-k2" or "kimi_k2" in the model name
  • Qwen3 models: Models containing "qwen3", "qwen-3", or "qwen_3" in the model name
  • DeepSeek R1 models: Models containing "deepseek-r1", "deepseek_r1", or similar patterns

Other models will not have tool injection or function call parsing enabled.

Supported Formats

Kimi-K2 Native Token Format

Detection Pattern: <|tool_calls_section_begin|>...<|tool_calls_section_end|>

Structure:

<|tool_calls_section_begin|>
<|tool_call_begin|>
functions.{name}:{index}<|tool_call_argument_begin|>
{JSON arguments}
<|tool_call_end|>
<|tool_calls_section_end|>

Example:

<|tool_calls_section_begin|>
<|tool_call_begin|>
functions.get_weather:0<|tool_call_argument_begin|>
{"location": "Tokyo"}
<|tool_call_end|>
<|tool_calls_section_end|>

Notes:

  • Native Kimi-K2 token format
  • Multiple function calls supported with different indices
  • Arguments are JSON objects
  • Function names follow functions.{name}:{index} pattern

XML-Style Format (Fallback)

Detection Pattern: <tool_call>...<invoke name="...">...<parameter name="...">...</parameter>...</invoke></tool_call>

Structure:

<tool_call>
<invoke name="{function_name}">
<parameter name="{param_name}">{param_value}</parameter>
<parameter name="{param_name}">{param_value}</parameter>
</invoke>
</tool_call>

Example:

<tool_call>
<invoke name="Write">
<parameter name="file_path">/path/to/file.txt</parameter>
<parameter name="content">File content here</parameter>
</invoke>
</tool_call>

Notes:

  • XML-style format as fallback when model generates this format instead of token format
  • Parameters are extracted as key-value pairs
  • Automatically converted to JSON arguments

DeepSeek R1 Native Format

Detection Pattern: <tool▁calls▁begin>...<tool▁calls▁end>

Structure:

<tool▁calls▁begin>
<tool▁call▁begin>
function<tool▁sep>{function_name}
```json
{JSON arguments}

<tool▁call▁end> <tool▁calls▁end>


**Example:**

<tool▁calls▁begin> <tool▁call▁begin> function<tool▁sep>get_weather

{"location": "Tokyo"}

<tool▁call▁end> <tool▁calls▁end>


**Notes:**
- Native DeepSeek R1 format ported from original llama.cpp
- Supports reasoning with `<think>...</think>` tags (automatically extracted)
- Multiple function calls supported with separate call blocks
- JSON arguments are contained within markdown code blocks

## OpenAI-Compatible Output

The native format is converted to the standard OpenAI function calling response:

```json
{
  "choices": [
    {
      "finish_reason": "tool_calls",
      "message": {
        "role": "assistant",
        "content": "filtered_content_without_function_calls",
        "tool_calls": [
          {
            "id": "functions.get_weather:0",
            "type": "function",
            "function": {
              "name": "get_weather",
              "arguments": "{\"location\": \"Tokyo\"}"
            }
          }
        ]
      }
    }
  ]
}

Implementation Details

Content Filtering

When function calls are detected:

  • Function call syntax is removed from content
  • Tool calls are extracted into separate array
  • Content is cleaned for display

Error Handling

  • Missing tokens in format returns empty array
  • Malformed structure returns empty array
  • Parser gracefully handles invalid JSON in arguments

Usage with Tools Parameter

To enable function calling, include the tools parameter in your request:

{
  "model": "kimi-k2",
  "messages": [
    {
      "role": "user",
      "content": "What's the weather in Tokyo?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_weather",
        "description": "Get weather information for a location",
        "parameters": {
          "type": "object",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. San Francisco, CA"
            }
          },
          "required": ["location"]
        }
      }
    }
  ]
}

Model Compatibility

  • Kimi-K2 models: Native support with token format
  • Qwen3 models: Native support with XML format (Hermes-style)
  • DeepSeek R1 models: Native support with reasoning and function call format (ported from original llama.cpp)
  • Other models: No function calling support

Testing

Test files are provided to verify function calling:

  • test-function-calls.cpp - Unit tests for the native Kimi-K2 format
    • Tests native token format parsing
    • Tests multiple function calls
    • Tests error handling and malformed input

File Structure

  • function_calls.hpp - Parser implementation for native Kimi-K2 format
  • utils.hpp - Integration with server (includes function_calls.hpp)
  • server.cpp - Response formatting and content filtering