mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-21 15:23:58 +00:00
@@ -17,7 +17,6 @@ class ControlNet(nn.Module):
|
||||
dims=2,
|
||||
num_classes=None,
|
||||
use_checkpoint=False,
|
||||
dtype=torch.float32,
|
||||
num_heads=-1,
|
||||
num_head_channels=-1,
|
||||
num_heads_upsample=-1,
|
||||
@@ -35,29 +34,27 @@ class ControlNet(nn.Module):
|
||||
adm_in_channels=None,
|
||||
transformer_depth_middle=None,
|
||||
transformer_depth_output=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
assert use_spatial_transformer == True, "use_spatial_transformer has to be true"
|
||||
assert use_spatial_transformer
|
||||
if use_spatial_transformer:
|
||||
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
|
||||
assert context_dim is not None
|
||||
|
||||
if context_dim is not None:
|
||||
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
|
||||
# from omegaconf.listconfig import ListConfig
|
||||
# if type(context_dim) == ListConfig:
|
||||
# context_dim = list(context_dim)
|
||||
assert use_spatial_transformer
|
||||
|
||||
if num_heads_upsample == -1:
|
||||
num_heads_upsample = num_heads
|
||||
|
||||
if num_heads == -1:
|
||||
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
assert num_head_channels != -1
|
||||
|
||||
if num_head_channels == -1:
|
||||
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
|
||||
assert num_heads != -1
|
||||
|
||||
self.dtype = dtype
|
||||
self.dims = dims
|
||||
self.in_channels = in_channels
|
||||
self.model_channels = model_channels
|
||||
@@ -66,12 +63,10 @@ class ControlNet(nn.Module):
|
||||
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
|
||||
else:
|
||||
if len(num_res_blocks) != len(channel_mult):
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
|
||||
"as a list/tuple (per-level) with the same length as channel_mult")
|
||||
raise ValueError("provide num_res_blocks either as an int (globally constant) or as a list/tuple (per-level) with the same length as channel_mult")
|
||||
self.num_res_blocks = num_res_blocks
|
||||
|
||||
if disable_self_attentions is not None:
|
||||
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
|
||||
assert len(disable_self_attentions) == len(channel_mult)
|
||||
if num_attention_blocks is not None:
|
||||
assert len(num_attention_blocks) == len(self.num_res_blocks)
|
||||
@@ -84,7 +79,6 @@ class ControlNet(nn.Module):
|
||||
self.conv_resample = conv_resample
|
||||
self.num_classes = num_classes
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.dtype = dtype
|
||||
self.num_heads = num_heads
|
||||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
@@ -92,24 +86,23 @@ class ControlNet(nn.Module):
|
||||
|
||||
time_embed_dim = model_channels * 4
|
||||
self.time_embed = nn.Sequential(
|
||||
nn.Linear(model_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.Linear(model_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
nn.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.Linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
|
||||
if self.num_classes is not None:
|
||||
if isinstance(self.num_classes, int):
|
||||
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
||||
elif self.num_classes == "continuous":
|
||||
print("setting up linear c_adm embedding layer")
|
||||
self.label_emb = nn.Linear(1, time_embed_dim)
|
||||
elif self.num_classes == "sequential":
|
||||
assert adm_in_channels is not None
|
||||
self.label_emb = nn.Sequential(
|
||||
nn.Sequential(
|
||||
nn.Linear(adm_in_channels, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.Linear(adm_in_channels, time_embed_dim),
|
||||
nn.SiLU(),
|
||||
nn.Linear(time_embed_dim, time_embed_dim, dtype=self.dtype, device=device),
|
||||
nn.Linear(time_embed_dim, time_embed_dim),
|
||||
)
|
||||
)
|
||||
else:
|
||||
@@ -118,28 +111,28 @@ class ControlNet(nn.Module):
|
||||
self.input_blocks = nn.ModuleList(
|
||||
[
|
||||
TimestepEmbedSequential(
|
||||
nn.Conv2d(in_channels, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
nn.Conv2d(in_channels, model_channels, 3, padding=1)
|
||||
)
|
||||
]
|
||||
)
|
||||
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels, dtype=self.dtype, device=device)])
|
||||
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
|
||||
|
||||
self.input_hint_block = TimestepEmbedSequential(
|
||||
conv_nd(dims, hint_channels, 16, 3, padding=1, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, hint_channels, 16, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 16, 3, padding=1, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, 16, 16, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 16, 32, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 32, 3, padding=1, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, 32, 32, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 32, 96, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 96, 96, 3, padding=1, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, 96, 96, 3, padding=1),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 96, 256, 3, padding=1, stride=2, dtype=self.dtype, device=device),
|
||||
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
|
||||
nn.SiLU(),
|
||||
conv_nd(dims, 256, model_channels, 3, padding=1, dtype=self.dtype, device=device)
|
||||
conv_nd(dims, 256, model_channels, 3, padding=1)
|
||||
)
|
||||
|
||||
self._feature_size = model_channels
|
||||
@@ -157,8 +150,6 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)
|
||||
]
|
||||
ch = mult * model_channels
|
||||
@@ -180,11 +171,11 @@ class ControlNet(nn.Module):
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=num_transformers, context_dim=context_dim,
|
||||
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
use_checkpoint=use_checkpoint
|
||||
)
|
||||
)
|
||||
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
||||
self.zero_convs.append(self.make_zero_conv(ch, dtype=self.dtype, device=device))
|
||||
self.zero_convs.append(self.make_zero_conv(ch))
|
||||
self._feature_size += ch
|
||||
input_block_chans.append(ch)
|
||||
if level != len(channel_mult) - 1:
|
||||
@@ -200,18 +191,16 @@ class ControlNet(nn.Module):
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
down=True,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)
|
||||
if resblock_updown
|
||||
else Downsample(
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch, dtype=self.dtype, device=device
|
||||
ch, conv_resample, dims=dims, out_channels=out_ch
|
||||
)
|
||||
)
|
||||
)
|
||||
ch = out_ch
|
||||
input_block_chans.append(ch)
|
||||
self.zero_convs.append(self.make_zero_conv(ch, dtype=self.dtype, device=device))
|
||||
self.zero_convs.append(self.make_zero_conv(ch))
|
||||
ds *= 2
|
||||
self._feature_size += ch
|
||||
|
||||
@@ -229,15 +218,13 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)]
|
||||
if transformer_depth_middle >= 0:
|
||||
mid_block += [
|
||||
SpatialTransformer( # always uses a self-attn
|
||||
SpatialTransformer(
|
||||
ch, num_heads, dim_head, depth=transformer_depth_middle, context_dim=context_dim,
|
||||
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
|
||||
use_checkpoint=use_checkpoint, dtype=self.dtype, device=device
|
||||
use_checkpoint=use_checkpoint
|
||||
),
|
||||
ResBlock(
|
||||
ch,
|
||||
@@ -246,15 +233,13 @@ class ControlNet(nn.Module):
|
||||
dims=dims,
|
||||
use_checkpoint=use_checkpoint,
|
||||
use_scale_shift_norm=use_scale_shift_norm,
|
||||
dtype=self.dtype,
|
||||
device=device,
|
||||
)]
|
||||
self.middle_block = TimestepEmbedSequential(*mid_block)
|
||||
self.middle_block_out = self.make_zero_conv(ch, dtype=self.dtype, device=device)
|
||||
self.middle_block_out = self.make_zero_conv(ch)
|
||||
self._feature_size += ch
|
||||
|
||||
def make_zero_conv(self, channels, dtype=None, device=None):
|
||||
return TimestepEmbedSequential(conv_nd(self.dims, channels, channels, 1, padding=0, dtype=dtype, device=device))
|
||||
def make_zero_conv(self, channels):
|
||||
return TimestepEmbedSequential(conv_nd(self.dims, channels, channels, 1, padding=0))
|
||||
|
||||
def forward(self, x, hint, timesteps, context, y=None, **kwargs):
|
||||
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
|
||||
|
||||
@@ -116,8 +116,8 @@ class ControlNetPatcher(ControlModelPatcher):
|
||||
controlnet_config.pop("out_channels")
|
||||
controlnet_config["hint_channels"] = controlnet_data["{}input_hint_block.0.weight".format(prefix)].shape[1]
|
||||
|
||||
with using_forge_operations():
|
||||
control_model = cldm.ControlNet(**controlnet_config)
|
||||
with using_forge_operations(dtype=unet_dtype):
|
||||
control_model = cldm.ControlNet(**controlnet_config).to(dtype=unet_dtype)
|
||||
|
||||
if pth:
|
||||
if 'difference' in controlnet_data:
|
||||
|
||||
Reference in New Issue
Block a user