This commit is contained in:
lllyasviel
2024-02-02 14:32:00 -08:00
parent af1fd645c1
commit 01e610f2ec
2 changed files with 79 additions and 6 deletions

View File

@@ -11,9 +11,6 @@ import ldm_patched.controlnet.cldm
import ldm_patched.t2ia.adapter
compute_controlnet_weighting = None
def broadcast_image_to(tensor, target_batch_size, batched_number):
current_batch_size = tensor.shape[0]
#print(current_batch_size, target_batch_size)
@@ -32,6 +29,71 @@ def broadcast_image_to(tensor, target_batch_size, batched_number):
else:
return torch.cat([tensor] * batched_number, dim=0)
def get_at(array, index, default=None):
return array[index] if 0 <= index < len(array) else default
def compute_controlnet_weighting(control, cnet):
positive_advanced_weighting = getattr(cnet, 'positive_advanced_weighting', None)
negative_advanced_weighting = getattr(cnet, 'negative_advanced_weighting', None)
advanced_frame_weighting = getattr(cnet, 'advanced_frame_weighting', None)
advanced_sigma_weighting = getattr(cnet, 'advanced_sigma_weighting', None)
advanced_mask_weighting = getattr(cnet, 'advanced_mask_weighting', None)
transformer_options = cnet.transformer_options
if positive_advanced_weighting is None and negative_advanced_weighting is None \
and advanced_frame_weighting is None and advanced_sigma_weighting is None \
and advanced_mask_weighting is None:
return control
cond_or_uncond = transformer_options['cond_or_uncond']
sigmas = transformer_options['sigmas']
cond_mark = transformer_options['cond_mark']
if advanced_frame_weighting is not None:
advanced_frame_weighting = torch.Tensor(advanced_frame_weighting * len(cond_or_uncond)).to(sigmas)
assert advanced_frame_weighting.shape[0] == cond_mark.shape[0], \
'Frame weighting list length is different from batch size!'
if advanced_sigma_weighting is not None:
advanced_sigma_weighting = torch.cat([advanced_sigma_weighting(sigmas)] * len(cond_or_uncond))
for k, v in control.items():
for i in range(len(v)):
control_signal = control[k][i]
B, C, H, W = control_signal.shape
positive_weight = 1.0
negative_weight = 1.0
sigma_weight = 1.0
frame_weight = 1.0
if positive_advanced_weighting is not None:
positive_weight = get_at(positive_advanced_weighting.get(k, []), i, 1.0)
if negative_advanced_weighting is not None:
negative_weight = get_at(negative_advanced_weighting.get(k, []), i, 1.0)
if advanced_sigma_weighting is not None:
sigma_weight = advanced_sigma_weighting
if advanced_frame_weighting is not None:
frame_weight = advanced_frame_weighting
final_weight = positive_weight * (1.0 - cond_mark) + negative_weight * cond_mark
final_weight = final_weight * sigma_weight * frame_weight
if isinstance(advanced_mask_weighting, torch.Tensor):
control_signal = control_signal * torch.nn.functional.interpolate(advanced_mask_weighting.to(control_signal), size=(H, W), mode='bilinear')
control[k][i] = control_signal * final_weight[:, None, None, None]
return control
class ControlBase:
def __init__(self, device=None):
self.cond_hint_original = None
@@ -40,6 +102,7 @@ class ControlBase:
self.timestep_percent_range = (0.0, 1.0)
self.global_average_pooling = False
self.timestep_range = None
self.transformer_options = {}
if device is None:
device = ldm_patched.modules.model_management.get_torch_device()
@@ -118,8 +181,7 @@ class ControlBase:
out[key].append(x)
if compute_controlnet_weighting is not None:
out = compute_controlnet_weighting(out, self)
out = compute_controlnet_weighting(out, self)
if control_prev is not None:
for x in ['input', 'middle', 'output']:
@@ -149,6 +211,11 @@ class ControlNet(ControlBase):
self.manual_cast_dtype = manual_cast_dtype
def get_control(self, x_noisy, t, cond, batched_number):
to = self.transformer_options
for conditioning_modifier in to.get('controlnet_conditioning_modifiers', []):
x_noisy, t, cond, batched_number = conditioning_modifier(self, x_noisy, t, cond, batched_number)
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)
@@ -443,6 +510,11 @@ class T2IAdapter(ControlBase):
return width, height
def get_control(self, x_noisy, t, cond, batched_number):
to = self.transformer_options
for conditioning_modifier in to.get('controlnet_conditioning_modifiers', []):
x_noisy, t, cond, batched_number = conditioning_modifier(self, x_noisy, t, cond, batched_number)
control_prev = None
if self.previous_controlnet is not None:
control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number)

View File

@@ -244,7 +244,8 @@ def calc_cond_uncond_batch(model, cond, uncond, x_in, timestep, model_options):
while p is not None:
p.transformer_options = transformer_options
p = p.previous_controlnet
c['control'] = control.get_control(input_x, timestep_, c, len(cond_or_uncond))
control_cond = c.copy() # get_control may change items in this dict, so we need to copy it
c['control'] = control.get_control(input_x, timestep_, control_cond, len(cond_or_uncond))
if 'model_function_wrapper' in model_options:
output = model_options['model_function_wrapper'](model.apply_model, {"input": input_x, "timestep": timestep_, "c": c, "cond_or_uncond": cond_or_uncond}).chunk(batch_chunks)