mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-10 01:49:58 +00:00
clipvision, ipadapter, and misc
backend is 75% finished
This commit is contained in:
15
backend/misc/checkpoint_pickle.py
Normal file
15
backend/misc/checkpoint_pickle.py
Normal file
@@ -0,0 +1,15 @@
|
||||
import pickle
|
||||
|
||||
load = pickle.load
|
||||
|
||||
|
||||
class Empty:
|
||||
pass
|
||||
|
||||
|
||||
class Unpickler(pickle.Unpickler):
|
||||
def find_class(self, module, name):
|
||||
# TODO: safe unpickle
|
||||
if module.startswith("pytorch_lightning"):
|
||||
return Empty
|
||||
return super().find_class(module, name)
|
||||
190
backend/patcher/clipvision.py
Normal file
190
backend/patcher/clipvision.py
Normal file
@@ -0,0 +1,190 @@
|
||||
import torch
|
||||
|
||||
from backend.utils import load_torch_file
|
||||
from backend.state_dict import transformers_convert, state_dict_prefix_replace
|
||||
from backend import operations, memory_management
|
||||
from backend.patcher.base import ModelPatcher
|
||||
from transformers import modeling_utils, CLIPVisionConfig, CLIPVisionModelWithProjection
|
||||
|
||||
|
||||
CLIP_VISION_G = {
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1664,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 8192,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 48,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 1280,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
|
||||
CLIP_VISION_H = {
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "gelu",
|
||||
"hidden_size": 1280,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 5120,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 32,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 1024,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
|
||||
|
||||
CLIP_VISION_VITL = {
|
||||
"attention_dropout": 0.0,
|
||||
"dropout": 0.0,
|
||||
"hidden_act": "quick_gelu",
|
||||
"hidden_size": 1024,
|
||||
"image_size": 224,
|
||||
"initializer_factor": 1.0,
|
||||
"initializer_range": 0.02,
|
||||
"intermediate_size": 4096,
|
||||
"layer_norm_eps": 1e-05,
|
||||
"model_type": "clip_vision_model",
|
||||
"num_attention_heads": 16,
|
||||
"num_channels": 3,
|
||||
"num_hidden_layers": 24,
|
||||
"patch_size": 14,
|
||||
"projection_dim": 768,
|
||||
"torch_dtype": "float32"
|
||||
}
|
||||
|
||||
|
||||
class Output:
|
||||
def __getitem__(self, key):
|
||||
return getattr(self, key)
|
||||
|
||||
def __setitem__(self, key, item):
|
||||
setattr(self, key, item)
|
||||
|
||||
|
||||
def clip_preprocess(image, size=224):
|
||||
mean = torch.tensor([0.48145466, 0.4578275, 0.40821073], device=image.device, dtype=image.dtype)
|
||||
std = torch.tensor([0.26862954, 0.26130258, 0.27577711], device=image.device, dtype=image.dtype)
|
||||
image = image.movedim(-1, 1)
|
||||
if not (image.shape[2] == size and image.shape[3] == size):
|
||||
scale = (size / min(image.shape[2], image.shape[3]))
|
||||
image = torch.nn.functional.interpolate(image, size=(round(scale * image.shape[2]), round(scale * image.shape[3])), mode="bicubic", antialias=True)
|
||||
h = (image.shape[2] - size) // 2
|
||||
w = (image.shape[3] - size) // 2
|
||||
image = image[:, :, h:h + size, w:w + size]
|
||||
image = torch.clip((255. * image), 0, 255).round() / 255.0
|
||||
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1])
|
||||
|
||||
|
||||
class ClipVisionModel:
|
||||
def __init__(self, config):
|
||||
config = CLIPVisionConfig(**config)
|
||||
|
||||
self.load_device = memory_management.text_encoder_device()
|
||||
self.offload_device = memory_management.text_encoder_offload_device()
|
||||
|
||||
if memory_management.should_use_fp16(self.load_device, prioritize_performance=False):
|
||||
self.dtype = torch.float16
|
||||
else:
|
||||
self.dtype = torch.float32
|
||||
|
||||
with operations.using_forge_operations():
|
||||
with modeling_utils.no_init_weights():
|
||||
self.model = CLIPVisionModelWithProjection(config)
|
||||
|
||||
self.model.to(self.dtype)
|
||||
self.patcher = ModelPatcher(
|
||||
self.model,
|
||||
load_device=self.load_device,
|
||||
offload_device=self.offload_device
|
||||
)
|
||||
|
||||
def load_sd(self, sd):
|
||||
return self.model.load_state_dict(sd, strict=False)
|
||||
|
||||
def get_sd(self):
|
||||
return self.model.state_dict()
|
||||
|
||||
def encode_image(self, image):
|
||||
memory_management.load_model_gpu(self.patcher)
|
||||
pixel_values = clip_preprocess(image.to(self.load_device))
|
||||
outputs = self.model(pixel_values=pixel_values, output_hidden_states=True)
|
||||
|
||||
o = Output()
|
||||
o["last_hidden_state"] = outputs.last_hidden_state.to(memory_management.intermediate_device())
|
||||
o["penultimate_hidden_states"] = outputs.hidden_states[-2].to(memory_management.intermediate_device())
|
||||
o["image_embeds"] = outputs.image_embeds.to(memory_management.intermediate_device())
|
||||
|
||||
return o
|
||||
|
||||
|
||||
def convert_to_transformers(sd, prefix):
|
||||
sd_k = sd.keys()
|
||||
if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k:
|
||||
keys_to_replace = {
|
||||
"{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding",
|
||||
"{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight",
|
||||
"{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight",
|
||||
"{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias",
|
||||
"{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight",
|
||||
"{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias",
|
||||
"{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight",
|
||||
}
|
||||
|
||||
for x in keys_to_replace:
|
||||
if x in sd_k:
|
||||
sd[keys_to_replace[x]] = sd.pop(x)
|
||||
|
||||
if "{}proj".format(prefix) in sd_k:
|
||||
sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1)
|
||||
|
||||
sd = transformers_convert(sd, prefix, "vision_model.", 48)
|
||||
else:
|
||||
replace_prefix = {prefix: ""}
|
||||
sd = state_dict_prefix_replace(sd, replace_prefix)
|
||||
return sd
|
||||
|
||||
|
||||
def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
|
||||
if convert_keys:
|
||||
sd = convert_to_transformers(sd, prefix)
|
||||
if "vision_model.encoder.layers.47.layer_norm1.weight" in sd:
|
||||
config = CLIP_VISION_G
|
||||
elif "vision_model.encoder.layers.30.layer_norm1.weight" in sd:
|
||||
config = CLIP_VISION_H
|
||||
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
|
||||
config = CLIP_VISION_VITL
|
||||
else:
|
||||
return None
|
||||
|
||||
clip = ClipVisionModel(config)
|
||||
m, u = clip.load_sd(sd)
|
||||
if len(m) > 0:
|
||||
print("extra clip vision:", m)
|
||||
u = set(u)
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
if k not in u:
|
||||
t = sd.pop(k)
|
||||
del t
|
||||
return clip
|
||||
|
||||
|
||||
def load(ckpt_path):
|
||||
sd = load_torch_file(ckpt_path)
|
||||
if "visual.transformer.resblocks.0.attn.in_proj_weight" in sd:
|
||||
return load_clipvision_from_sd(sd, prefix="visual.", convert_keys=True)
|
||||
else:
|
||||
return load_clipvision_from_sd(sd)
|
||||
@@ -1,4 +1,29 @@
|
||||
import torch
|
||||
import safetensors.torch
|
||||
import backend.misc.checkpoint_pickle
|
||||
|
||||
|
||||
def load_torch_file(ckpt, safe_load=False, device=None):
|
||||
if device is None:
|
||||
device = torch.device("cpu")
|
||||
if ckpt.lower().endswith(".safetensors"):
|
||||
sd = safetensors.torch.load_file(ckpt, device=device.type)
|
||||
else:
|
||||
if safe_load:
|
||||
if not 'weights_only' in torch.load.__code__.co_varnames:
|
||||
print("Warning torch.load doesn't support weights_only on this pytorch version, loading unsafely.")
|
||||
safe_load = False
|
||||
if safe_load:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True)
|
||||
else:
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=backend.misc.checkpoint_pickle)
|
||||
if "global_step" in pl_sd:
|
||||
print(f"Global Step: {pl_sd['global_step']}")
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
sd = pl_sd
|
||||
return sd
|
||||
|
||||
|
||||
def set_attr(obj, attr, value):
|
||||
|
||||
@@ -6,7 +6,7 @@ from annotator.pidinet.model import pidinet
|
||||
from annotator.util import safe_step
|
||||
from modules import devices
|
||||
from annotator.annotator_path import models_path
|
||||
from ldm_patched.modules.utils import load_torch_file
|
||||
from backend.utils import load_torch_file
|
||||
|
||||
netNetwork = None
|
||||
remote_model_path = "https://huggingface.co/lllyasviel/Annotators/resolve/main/table5_pidinet.pth"
|
||||
|
||||
@@ -2,15 +2,15 @@ import torch
|
||||
|
||||
from modules_forge.supported_preprocessor import Preprocessor, PreprocessorParameter
|
||||
from modules_forge.shared import add_supported_preprocessor
|
||||
from ldm_patched.modules.samplers import sampling_function
|
||||
import ldm_patched.ldm.modules.attention as attention
|
||||
from backend.sampling.sampling_function import sampling_function_inner
|
||||
from backend import attention
|
||||
|
||||
|
||||
def sdp(q, k, v, transformer_options):
|
||||
if q.shape[0] == 0:
|
||||
return q
|
||||
|
||||
return attention.optimized_attention(q, k, v, heads=transformer_options["n_heads"], mask=None)
|
||||
return attention.attention_function(q, k, v, heads=transformer_options["n_heads"], mask=None)
|
||||
|
||||
|
||||
def adain(x, target_std, target_mean):
|
||||
@@ -81,7 +81,7 @@ class PreprocessorReference(Preprocessor):
|
||||
self.is_recording_style = True
|
||||
|
||||
xt = latent_image.to(x) + torch.randn(x.size(), dtype=x.dtype, generator=gen_cpu).to(x) * sigma
|
||||
sampling_function(model, xt, timestep, uncond, cond, 1, model_options, seed)
|
||||
sampling_function_inner(model, xt, timestep, uncond, cond, 1, model_options, seed)
|
||||
|
||||
self.is_recording_style = False
|
||||
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
import math
|
||||
import torch
|
||||
import os
|
||||
|
||||
import ldm_patched.modules
|
||||
|
||||
|
||||
def extra_options_to_module_prefix(extra_options):
|
||||
|
||||
@@ -1,14 +1,14 @@
|
||||
import os
|
||||
import torch
|
||||
import copy
|
||||
import backend.patcher.base
|
||||
|
||||
from modules_forge.shared import add_supported_control_model
|
||||
from modules_forge.supported_controlnet import ControlModelPatcher
|
||||
from modules_forge.forge_sampler import sampling_prepare
|
||||
from ldm_patched.modules.utils import load_torch_file
|
||||
from ldm_patched.modules import model_patcher
|
||||
from ldm_patched.modules.model_management import cast_to_device, current_loaded_models
|
||||
from ldm_patched.modules.lora import model_lora_keys_unet
|
||||
from backend.utils import load_torch_file
|
||||
from backend.memory_management import cast_to_device, current_loaded_models
|
||||
from backend.patcher.lora import model_lora_keys_unet
|
||||
|
||||
|
||||
def is_model_loaded(model):
|
||||
@@ -127,5 +127,5 @@ class FooocusInpaintPatcher(ControlModelPatcher):
|
||||
return
|
||||
|
||||
|
||||
model_patcher.extra_weight_calculators['fooocus'] = calculate_weight_fooocus
|
||||
backend.patcher.base.extra_weight_calculators['fooocus'] = calculate_weight_fooocus
|
||||
add_supported_control_model(FooocusInpaintPatcher)
|
||||
|
||||
@@ -1,47 +1,92 @@
|
||||
import torch
|
||||
import gradio as gr
|
||||
|
||||
from modules import scripts
|
||||
from ldm_patched.contrib.external_freelunch import FreeU_V2
|
||||
|
||||
|
||||
def Fourier_filter(x, threshold, scale):
|
||||
# FFT
|
||||
x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
|
||||
x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
|
||||
|
||||
B, C, H, W = x_freq.shape
|
||||
mask = torch.ones((B, C, H, W), device=x.device)
|
||||
|
||||
crow, ccol = H // 2, W // 2
|
||||
mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
||||
x_freq = x_freq * mask
|
||||
|
||||
# IFFT
|
||||
x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
|
||||
x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
|
||||
|
||||
return x_filtered.to(x.dtype)
|
||||
|
||||
|
||||
class FreeU:
|
||||
def patch(self, model, b1, b2, s1, s2):
|
||||
model_channels = model.model.model_config.unet_config["model_channels"]
|
||||
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
||||
on_cpu_devices = {}
|
||||
|
||||
def output_block_patch(h, hsp, transformer_options):
|
||||
scale = scale_dict.get(h.shape[1], None)
|
||||
if scale is not None:
|
||||
h[:, :h.shape[1] // 2] = h[:, :h.shape[1] // 2] * scale[0]
|
||||
if hsp.device not in on_cpu_devices:
|
||||
try:
|
||||
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
||||
except:
|
||||
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
|
||||
on_cpu_devices[hsp.device] = True
|
||||
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
||||
else:
|
||||
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
||||
|
||||
return h, hsp
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m,)
|
||||
|
||||
|
||||
class FreeU_V2:
|
||||
def patch(self, model, b1, b2, s1, s2):
|
||||
model_channels = model.model.diffusion_model.legacy_config["model_channels"]
|
||||
scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
||||
on_cpu_devices = {}
|
||||
|
||||
def output_block_patch(h, hsp, transformer_options):
|
||||
scale = scale_dict.get(h.shape[1], None)
|
||||
if scale is not None:
|
||||
hidden_mean = h.mean(1).unsqueeze(1)
|
||||
B = hidden_mean.shape[0]
|
||||
hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
||||
hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
||||
hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
||||
|
||||
h[:, :h.shape[1] // 2] = h[:, :h.shape[1] // 2] * ((scale[0] - 1) * hidden_mean + 1)
|
||||
|
||||
if hsp.device not in on_cpu_devices:
|
||||
try:
|
||||
hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
||||
except:
|
||||
print("Device", hsp.device, "does not support the torch.fft functions used in the FreeU node, switching to CPU.")
|
||||
on_cpu_devices[hsp.device] = True
|
||||
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
||||
else:
|
||||
hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device)
|
||||
|
||||
return h, hsp
|
||||
|
||||
m = model.clone()
|
||||
m.set_model_output_block_patch(output_block_patch)
|
||||
return (m,)
|
||||
|
||||
|
||||
opFreeU_V2 = FreeU_V2()
|
||||
|
||||
|
||||
# def Fourier_filter(x, threshold, scale):
|
||||
# x_freq = torch.fft.fftn(x.float(), dim=(-2, -1))
|
||||
# x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1))
|
||||
# B, C, H, W = x_freq.shape
|
||||
# mask = torch.ones((B, C, H, W), device=x.device)
|
||||
# crow, ccol = H // 2, W //2
|
||||
# mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale
|
||||
# x_freq = x_freq * mask
|
||||
# x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1))
|
||||
# x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real
|
||||
# return x_filtered.to(x.dtype)
|
||||
#
|
||||
#
|
||||
# def set_freeu_v2_patch(model, b1, b2, s1, s2):
|
||||
# model_channels = model.model.model_config.unet_config["model_channels"]
|
||||
# scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)}
|
||||
#
|
||||
# def output_block_patch(h, hsp, *args, **kwargs):
|
||||
# scale = scale_dict.get(h.shape[1], None)
|
||||
# if scale is not None:
|
||||
# hidden_mean = h.mean(1).unsqueeze(1)
|
||||
# B = hidden_mean.shape[0]
|
||||
# hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
||||
# hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True)
|
||||
# hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / \
|
||||
# (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3)
|
||||
# h[:, :h.shape[1] // 2] = h[:, :h.shape[1] // 2] * ((scale[0] - 1) * hidden_mean + 1)
|
||||
# hsp = Fourier_filter(hsp, threshold=1, scale=scale[1])
|
||||
# return h, hsp
|
||||
#
|
||||
# m = model.clone()
|
||||
# m.set_model_output_block_patch(output_block_patch)
|
||||
# return m
|
||||
|
||||
|
||||
class FreeUForForge(scripts.Script):
|
||||
sorting_priority = 12
|
||||
|
||||
@@ -54,7 +99,7 @@ class FreeUForForge(scripts.Script):
|
||||
|
||||
def ui(self, *args, **kwargs):
|
||||
with gr.Accordion(open=False, label=self.title(), elem_id="extensions-freeu",
|
||||
elem_classes=["extensions-freeu"]):
|
||||
elem_classes=["extensions-freeu"]):
|
||||
freeu_enabled = gr.Checkbox(label='Enabled', value=False)
|
||||
freeu_b1 = gr.Slider(label='B1', minimum=0, maximum=2, step=0.01, value=1.01)
|
||||
freeu_b2 = gr.Slider(label='B2', minimum=0, maximum=2, step=0.01, value=1.02)
|
||||
|
||||
@@ -1,15 +1,16 @@
|
||||
# https://github.com/cubiq/ComfyUI_IPAdapter_plus/blob/main/IPAdapterPlus.py
|
||||
# https://github.com/cubiq/ComfyUI_IPAdapter_plus/blob/main/IPAdapterPlus.py from some early version
|
||||
# Then maintained by Forge to add InstanceID and many other things
|
||||
|
||||
|
||||
import torch
|
||||
import contextlib
|
||||
import os
|
||||
import math
|
||||
|
||||
import ldm_patched.modules.utils
|
||||
import ldm_patched.modules.model_management
|
||||
from ldm_patched.modules.clip_vision import clip_preprocess
|
||||
from ldm_patched.ldm.modules.attention import optimized_attention
|
||||
from ldm_patched.utils import path_utils as folder_paths
|
||||
from backend import memory_management, attention, utils
|
||||
from backend.misc.image_resize import adaptive_resize
|
||||
from backend.patcher.clipvision import clip_preprocess
|
||||
from modules_forge.shared import controlnet_dir, models_path
|
||||
|
||||
from torch import nn
|
||||
from PIL import Image
|
||||
@@ -18,31 +19,25 @@ import torchvision.transforms as TT
|
||||
|
||||
from lib_ipadapter.resampler import PerceiverAttention, FeedForward, Resampler
|
||||
|
||||
# set the models directory backward compatible
|
||||
GLOBAL_MODELS_DIR = os.path.join(folder_paths.models_dir, "ipadapter")
|
||||
MODELS_DIR = GLOBAL_MODELS_DIR if os.path.isdir(GLOBAL_MODELS_DIR) else os.path.join(os.path.dirname(os.path.realpath(__file__)), "models")
|
||||
if "ipadapter" not in folder_paths.folder_names_and_paths:
|
||||
current_paths = [MODELS_DIR]
|
||||
else:
|
||||
current_paths, _ = folder_paths.folder_names_and_paths["ipadapter"]
|
||||
folder_paths.folder_names_and_paths["ipadapter"] = (current_paths, folder_paths.supported_pt_extensions)
|
||||
GLOBAL_MODELS_DIR = os.path.join(models_path, "ipadapter")
|
||||
MODELS_DIR = GLOBAL_MODELS_DIR
|
||||
INSIGHTFACE_DIR = os.path.join(models_path, "insightface")
|
||||
|
||||
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface")
|
||||
|
||||
class FacePerceiverResampler(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
dim=768,
|
||||
depth=4,
|
||||
dim_head=64,
|
||||
heads=16,
|
||||
embedding_dim=1280,
|
||||
output_dim=768,
|
||||
ff_mult=4,
|
||||
self,
|
||||
*,
|
||||
dim=768,
|
||||
depth=4,
|
||||
dim_head=64,
|
||||
heads=16,
|
||||
embedding_dim=1280,
|
||||
output_dim=768,
|
||||
ff_mult=4,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.proj_in = torch.nn.Linear(embedding_dim, dim)
|
||||
self.proj_out = torch.nn.Linear(dim, output_dim)
|
||||
self.norm_out = torch.nn.LayerNorm(output_dim)
|
||||
@@ -65,21 +60,23 @@ class FacePerceiverResampler(torch.nn.Module):
|
||||
latents = self.proj_out(latents)
|
||||
return self.norm_out(latents)
|
||||
|
||||
|
||||
class MLPProjModel(torch.nn.Module):
|
||||
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024):
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.proj = torch.nn.Sequential(
|
||||
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim),
|
||||
torch.nn.GELU(),
|
||||
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim),
|
||||
torch.nn.LayerNorm(cross_attention_dim)
|
||||
)
|
||||
|
||||
|
||||
def forward(self, image_embeds):
|
||||
clip_extra_context_tokens = self.proj(image_embeds)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
|
||||
class MLPProjModelFaceId(torch.nn.Module):
|
||||
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, num_tokens=4):
|
||||
super().__init__()
|
||||
@@ -88,9 +85,9 @@ class MLPProjModelFaceId(torch.nn.Module):
|
||||
self.num_tokens = num_tokens
|
||||
|
||||
self.proj = torch.nn.Sequential(
|
||||
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
|
||||
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2),
|
||||
torch.nn.GELU(),
|
||||
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
|
||||
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens),
|
||||
)
|
||||
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
||||
|
||||
@@ -100,20 +97,21 @@ class MLPProjModelFaceId(torch.nn.Module):
|
||||
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
|
||||
class ProjModelFaceIdPlus(torch.nn.Module):
|
||||
def __init__(self, cross_attention_dim=768, id_embeddings_dim=512, clip_embeddings_dim=1280, num_tokens=4):
|
||||
super().__init__()
|
||||
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.num_tokens = num_tokens
|
||||
|
||||
|
||||
self.proj = torch.nn.Sequential(
|
||||
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim*2),
|
||||
torch.nn.Linear(id_embeddings_dim, id_embeddings_dim * 2),
|
||||
torch.nn.GELU(),
|
||||
torch.nn.Linear(id_embeddings_dim*2, cross_attention_dim*num_tokens),
|
||||
torch.nn.Linear(id_embeddings_dim * 2, cross_attention_dim * num_tokens),
|
||||
)
|
||||
self.norm = torch.nn.LayerNorm(cross_attention_dim)
|
||||
|
||||
|
||||
self.perceiver_resampler = FacePerceiverResampler(
|
||||
dim=cross_attention_dim,
|
||||
depth=4,
|
||||
@@ -123,7 +121,7 @@ class ProjModelFaceIdPlus(torch.nn.Module):
|
||||
output_dim=cross_attention_dim,
|
||||
ff_mult=4,
|
||||
)
|
||||
|
||||
|
||||
def forward(self, id_embeds, clip_embeds, scale=1.0, shortcut=False):
|
||||
x = self.proj(id_embeds)
|
||||
x = x.reshape(-1, self.num_tokens, self.cross_attention_dim)
|
||||
@@ -133,21 +131,23 @@ class ProjModelFaceIdPlus(torch.nn.Module):
|
||||
out = x + scale * out
|
||||
return out
|
||||
|
||||
|
||||
class ImageProjModel(nn.Module):
|
||||
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
|
||||
super().__init__()
|
||||
|
||||
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.clip_extra_context_tokens = clip_extra_context_tokens
|
||||
self.proj = nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
|
||||
self.norm = nn.LayerNorm(cross_attention_dim)
|
||||
|
||||
|
||||
def forward(self, image_embeds):
|
||||
embeds = image_embeds
|
||||
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
|
||||
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
|
||||
return clip_extra_context_tokens
|
||||
|
||||
|
||||
class To_KV(nn.Module):
|
||||
def __init__(self, state_dict):
|
||||
super().__init__()
|
||||
@@ -157,6 +157,7 @@ class To_KV(nn.Module):
|
||||
self.to_kvs[key.replace(".weight", "").replace(".", "_")] = nn.Linear(value.shape[1], value.shape[0], bias=False)
|
||||
self.to_kvs[key.replace(".weight", "").replace(".", "_")].weight.data = value
|
||||
|
||||
|
||||
def set_model_patch_replace(model, patch_kwargs, key):
|
||||
to = model.model_options["transformer_options"]
|
||||
if "patches_replace" not in to:
|
||||
@@ -169,41 +170,46 @@ def set_model_patch_replace(model, patch_kwargs, key):
|
||||
else:
|
||||
to["patches_replace"]["attn2"][key].set_new_condition(**patch_kwargs)
|
||||
|
||||
|
||||
def image_add_noise(image, noise):
|
||||
image = image.permute([0,3,1,2])
|
||||
torch.manual_seed(0) # use a fixed random for reproducible results
|
||||
image = image.permute([0, 3, 1, 2])
|
||||
torch.manual_seed(0) # use a fixed random for reproducible results
|
||||
transforms = TT.Compose([
|
||||
TT.CenterCrop(min(image.shape[2], image.shape[3])),
|
||||
TT.Resize((224, 224), interpolation=TT.InterpolationMode.BICUBIC, antialias=True),
|
||||
TT.ElasticTransform(alpha=75.0, sigma=noise*3.5), # shuffle the image
|
||||
TT.RandomVerticalFlip(p=1.0), # flip the image to change the geometry even more
|
||||
TT.ElasticTransform(alpha=75.0, sigma=noise * 3.5), # shuffle the image
|
||||
TT.RandomVerticalFlip(p=1.0), # flip the image to change the geometry even more
|
||||
TT.RandomHorizontalFlip(p=1.0),
|
||||
])
|
||||
image = transforms(image.cpu())
|
||||
image = image.permute([0,2,3,1])
|
||||
image = image + ((0.25*(1-noise)+0.05) * torch.randn_like(image) ) # add further random noise
|
||||
image = image.permute([0, 2, 3, 1])
|
||||
image = image + ((0.25 * (1 - noise) + 0.05) * torch.randn_like(image)) # add further random noise
|
||||
return image
|
||||
|
||||
|
||||
def zeroed_hidden_states(clip_vision, batch_size):
|
||||
image = torch.zeros([batch_size, 224, 224, 3])
|
||||
ldm_patched.modules.model_management.load_model_gpu(clip_vision.patcher)
|
||||
memory_management.load_model_gpu(clip_vision.patcher)
|
||||
pixel_values = clip_preprocess(image.to(clip_vision.load_device)).float()
|
||||
outputs = clip_vision.model(pixel_values=pixel_values, output_hidden_states=True)
|
||||
outputs = outputs.hidden_states[-2].to(ldm_patched.modules.model_management.intermediate_device())
|
||||
outputs = outputs.hidden_states[-2].to(memory_management.intermediate_device())
|
||||
return outputs
|
||||
|
||||
|
||||
def min_(tensor_list):
|
||||
# return the element-wise min of the tensor list.
|
||||
x = torch.stack(tensor_list)
|
||||
mn = x.min(axis=0)[0]
|
||||
return torch.clamp(mn, min=0)
|
||||
|
||||
|
||||
|
||||
def max_(tensor_list):
|
||||
# return the element-wise max of the tensor list.
|
||||
x = torch.stack(tensor_list)
|
||||
mx = x.max(axis=0)[0]
|
||||
return torch.clamp(mx, max=1)
|
||||
|
||||
|
||||
# From https://github.com/Jamy-L/Pytorch-Contrast-Adaptive-Sharpening/
|
||||
def contrast_adaptive_sharpening(image, amount):
|
||||
img = F.pad(image, pad=(1, 1, 1, 1)).cpu()
|
||||
@@ -217,33 +223,34 @@ def contrast_adaptive_sharpening(image, amount):
|
||||
g = img[..., 2:, :-2]
|
||||
h = img[..., 2:, 1:-1]
|
||||
i = img[..., 2:, 2:]
|
||||
|
||||
|
||||
# Computing contrast
|
||||
cross = (b, d, e, f, h)
|
||||
mn = min_(cross)
|
||||
mx = max_(cross)
|
||||
|
||||
|
||||
diag = (a, c, g, i)
|
||||
mn2 = min_(diag)
|
||||
mx2 = max_(diag)
|
||||
mx = mx + mx2
|
||||
mn = mn + mn2
|
||||
|
||||
|
||||
# Computing local weight
|
||||
inv_mx = torch.reciprocal(mx)
|
||||
amp = inv_mx * torch.minimum(mn, (2 - mx))
|
||||
|
||||
# scaling
|
||||
amp = torch.sqrt(amp)
|
||||
w = - amp * (amount * (1/5 - 1/8) + 1/8)
|
||||
div = torch.reciprocal(1 + 4*w)
|
||||
w = - amp * (amount * (1 / 5 - 1 / 8) + 1 / 8)
|
||||
div = torch.reciprocal(1 + 4 * w)
|
||||
|
||||
output = ((b + d + f + h)*w + e) * div
|
||||
output = ((b + d + f + h) * w + e) * div
|
||||
output = output.clamp(0, 1)
|
||||
output = torch.nan_to_num(output)
|
||||
|
||||
return (output)
|
||||
|
||||
|
||||
def tensorToNP(image):
|
||||
out = torch.clamp(255. * image.detach().cpu(), 0, 255).to(torch.uint8)
|
||||
out = out[..., [2, 1, 0]]
|
||||
@@ -251,13 +258,15 @@ def tensorToNP(image):
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def NPToTensor(image):
|
||||
out = torch.from_numpy(image)
|
||||
out = torch.clamp(out.to(torch.float)/255., 0.0, 1.0)
|
||||
out = torch.clamp(out.to(torch.float) / 255., 0.0, 1.0)
|
||||
out = out[..., [2, 1, 0]]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class IPAdapter(nn.Module):
|
||||
def __init__(self, ipadapter_model, cross_attention_dim=1024, output_cross_attention_dim=1024,
|
||||
clip_embeddings_dim=1024, clip_extra_context_tokens=4,
|
||||
@@ -356,6 +365,7 @@ class IPAdapter(nn.Module):
|
||||
uc = self.image_proj_model(torch.zeros_like(prompt_image_emb))
|
||||
return c, uc
|
||||
|
||||
|
||||
class CrossAttentionPatch:
|
||||
# forward for patching
|
||||
def __init__(self, weight, ipadapter, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
|
||||
@@ -370,9 +380,9 @@ class CrossAttentionPatch:
|
||||
self.sigma_end = [sigma_end]
|
||||
self.unfold_batch = [unfold_batch]
|
||||
|
||||
self.k_key = str(self.number*2+1) + "_to_k_ip"
|
||||
self.v_key = str(self.number*2+1) + "_to_v_ip"
|
||||
|
||||
self.k_key = str(self.number * 2 + 1) + "_to_k_ip"
|
||||
self.v_key = str(self.number * 2 + 1) + "_to_v_ip"
|
||||
|
||||
def set_new_condition(self, weight, ipadapter, number, cond, uncond, weight_type, mask=None, sigma_start=0.0, sigma_end=1.0, unfold_batch=False):
|
||||
self.weights.append(weight)
|
||||
self.ipadapters.append(ipadapter)
|
||||
@@ -400,9 +410,9 @@ class CrossAttentionPatch:
|
||||
b = q.shape[0]
|
||||
qs = q.shape[1]
|
||||
batch_prompt = b // len(cond_or_uncond)
|
||||
out = optimized_attention(q, k, v, extra_options["n_heads"])
|
||||
out = attention.attention_function(q, k, v, extra_options["n_heads"])
|
||||
_, _, lh, lw = extra_options["original_shape"]
|
||||
|
||||
|
||||
for weight, cond, uncond, ipadapter, mask, weight_type, sigma_start, sigma_end, unfold_batch in zip(self.weights, self.conds, self.unconds, self.ipadapters, self.masks, self.weight_type, self.sigma_start, self.sigma_end, self.unfold_batch):
|
||||
if sigma > sigma_start or sigma < sigma_end:
|
||||
continue
|
||||
@@ -418,8 +428,8 @@ class CrossAttentionPatch:
|
||||
else:
|
||||
# check if images length matches full_length - if not, make it match
|
||||
if cond.shape[0] < ad_params["full_length"]:
|
||||
cond = torch.cat((cond, cond[-1:].repeat((ad_params["full_length"]-cond.shape[0], 1, 1))), dim=0)
|
||||
uncond = torch.cat((uncond, uncond[-1:].repeat((ad_params["full_length"]-uncond.shape[0], 1, 1))), dim=0)
|
||||
cond = torch.cat((cond, cond[-1:].repeat((ad_params["full_length"] - cond.shape[0], 1, 1))), dim=0)
|
||||
uncond = torch.cat((uncond, uncond[-1:].repeat((ad_params["full_length"] - uncond.shape[0], 1, 1))), dim=0)
|
||||
# if we have too many remove the excess (should not happen, but just in case)
|
||||
if cond.shape[0] > ad_params["full_length"]:
|
||||
cond = cond[:ad_params["full_length"]]
|
||||
@@ -429,8 +439,8 @@ class CrossAttentionPatch:
|
||||
|
||||
# if we don't have enough reference images repeat the last one until we reach the right size
|
||||
if cond.shape[0] < batch_prompt:
|
||||
cond = torch.cat((cond, cond[-1:].repeat((batch_prompt-cond.shape[0], 1, 1))), dim=0)
|
||||
uncond = torch.cat((uncond, uncond[-1:].repeat((batch_prompt-uncond.shape[0], 1, 1))), dim=0)
|
||||
cond = torch.cat((cond, cond[-1:].repeat((batch_prompt - cond.shape[0], 1, 1))), dim=0)
|
||||
uncond = torch.cat((uncond, uncond[-1:].repeat((batch_prompt - uncond.shape[0], 1, 1))), dim=0)
|
||||
# if we have too many remove the exceeding
|
||||
elif cond.shape[0] > batch_prompt:
|
||||
cond = cond[:batch_prompt]
|
||||
@@ -464,7 +474,7 @@ class CrossAttentionPatch:
|
||||
ip_k = ip_k * W
|
||||
ip_v = ip_v_offset + ip_v_mean * W
|
||||
|
||||
out_ip = optimized_attention(q, ip_k.to(org_dtype), ip_v.to(org_dtype), extra_options["n_heads"])
|
||||
out_ip = attention.attention_function(q, ip_k.to(org_dtype), ip_v.to(org_dtype), extra_options["n_heads"])
|
||||
if weight_type.startswith("original"):
|
||||
out_ip = out_ip * weight
|
||||
|
||||
@@ -486,7 +496,7 @@ class CrossAttentionPatch:
|
||||
mask_downsample = F.interpolate(mask.unsqueeze(1), size=(mask_h, mask_w), mode="bicubic").squeeze(1)
|
||||
# check if mask length matches full_length - if not, make it match
|
||||
if mask_downsample.shape[0] < ad_params["full_length"]:
|
||||
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:].repeat((ad_params["full_length"]-mask_downsample.shape[0], 1, 1))), dim=0)
|
||||
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:].repeat((ad_params["full_length"] - mask_downsample.shape[0], 1, 1))), dim=0)
|
||||
# if we have too many remove the excess (should not happen, but just in case)
|
||||
if mask_downsample.shape[0] > ad_params["full_length"]:
|
||||
mask_downsample = mask_downsample[:ad_params["full_length"]]
|
||||
@@ -498,11 +508,11 @@ class CrossAttentionPatch:
|
||||
|
||||
# if we don't have enough masks repeat the last one until we reach the right size
|
||||
if mask_downsample.shape[0] < batch_prompt:
|
||||
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:, :, :].repeat((batch_prompt-mask_downsample.shape[0], 1, 1))), dim=0)
|
||||
mask_downsample = torch.cat((mask_downsample, mask_downsample[-1:, :, :].repeat((batch_prompt - mask_downsample.shape[0], 1, 1))), dim=0)
|
||||
# if we have too many remove the exceeding
|
||||
elif mask_downsample.shape[0] > batch_prompt:
|
||||
mask_downsample = mask_downsample[:batch_prompt, :, :]
|
||||
|
||||
|
||||
# repeat the masks
|
||||
mask_downsample = mask_downsample.repeat(len(cond_or_uncond), 1, 1)
|
||||
mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1, 1).repeat(1, 1, out.shape[2])
|
||||
@@ -513,19 +523,12 @@ class CrossAttentionPatch:
|
||||
|
||||
return out.to(dtype=org_dtype)
|
||||
|
||||
|
||||
class IPAdapterModelLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": { "ipadapter_file": (folder_paths.get_filename_list("ipadapter"), )}}
|
||||
|
||||
RETURN_TYPES = ("IPADAPTER",)
|
||||
FUNCTION = "load_ipadapter_model"
|
||||
CATEGORY = "ipadapter"
|
||||
|
||||
def load_ipadapter_model(self, ipadapter_file):
|
||||
ckpt_path = folder_paths.get_full_path("ipadapter", ipadapter_file)
|
||||
ckpt_path = os.path.join(controlnet_dir, "ipadapter", ipadapter_file)
|
||||
|
||||
model = ldm_patched.modules.utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
model = utils.load_torch_file(ckpt_path, safe_load=True)
|
||||
|
||||
if ckpt_path.lower().endswith(".safetensors"):
|
||||
st_model = {"image_proj": {}, "ip_adapter": {}}
|
||||
@@ -535,19 +538,22 @@ class IPAdapterModelLoader:
|
||||
elif key.startswith("ip_adapter."):
|
||||
st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key]
|
||||
model = st_model
|
||||
|
||||
|
||||
if not "ip_adapter" in model.keys() or not model["ip_adapter"]:
|
||||
raise Exception("invalid IPAdapter model {}".format(ckpt_path))
|
||||
|
||||
return (model,)
|
||||
|
||||
|
||||
insightface_face_align = None
|
||||
|
||||
|
||||
class InsightFaceLoader:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"provider": (["CPU", "CUDA", "ROCM"], ),
|
||||
"provider": (["CPU", "CUDA", "ROCM"],),
|
||||
},
|
||||
}
|
||||
|
||||
@@ -577,47 +583,24 @@ class InsightFaceLoader:
|
||||
local_path = os.path.join(model_root, local_file)
|
||||
if not os.path.exists(local_path):
|
||||
load_file_from_url(url, model_dir=model_root)
|
||||
|
||||
|
||||
from insightface.utils import face_align
|
||||
global insightface_face_align
|
||||
insightface_face_align = face_align
|
||||
|
||||
model = FaceAnalysis(name=name, root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',])
|
||||
model = FaceAnalysis(name=name, root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider', ])
|
||||
model.prepare(ctx_id=0, det_size=(640, 640))
|
||||
|
||||
return (model,)
|
||||
|
||||
|
||||
class IPAdapterApply:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"ipadapter": ("IPADAPTER", ),
|
||||
"clip_vision": ("CLIP_VISION",),
|
||||
"image": ("IMAGE",),
|
||||
"model": ("MODEL", ),
|
||||
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
|
||||
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
||||
"weight_type": (["original", "linear", "channel penalty"], ),
|
||||
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
||||
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
||||
"unfold_batch": ("BOOLEAN", { "default": False }),
|
||||
},
|
||||
"optional": {
|
||||
"attn_mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("MODEL", )
|
||||
FUNCTION = "apply_ipadapter"
|
||||
CATEGORY = "ipadapter"
|
||||
|
||||
def apply_ipadapter(self, ipadapter, model, weight, clip_vision=None, image=None, weight_type="original",
|
||||
noise=None, embeds=None, attn_mask=None, start_at=0.0, end_at=1.0, unfold_batch=False,
|
||||
insightface=None, faceid_v2=False, weight_v2=False, instant_id=False):
|
||||
|
||||
self.dtype = torch.float16 if ldm_patched.modules.model_management.should_use_fp16() else torch.float32
|
||||
self.device = ldm_patched.modules.model_management.get_torch_device()
|
||||
self.dtype = torch.float16 if memory_management.should_use_fp16() else torch.float32
|
||||
self.device = memory_management.get_torch_device()
|
||||
self.weight = weight
|
||||
self.is_full = "proj.3.weight" in ipadapter["image_proj"]
|
||||
self.is_portrait = "proj.2.weight" in ipadapter["image_proj"] and not "proj.3.weight" in ipadapter["image_proj"] and not "0.to_q_lora.down.weight" in ipadapter["ip_adapter"]
|
||||
@@ -662,14 +645,14 @@ class IPAdapterApply:
|
||||
face_embed = torch.stack(face_embed, dim=0)
|
||||
clip_embed = face_embed
|
||||
elif self.is_faceid:
|
||||
insightface.det_model.input_size = (640,640) # reset the detection size
|
||||
insightface.det_model.input_size = (640, 640) # reset the detection size
|
||||
face_img = tensorToNP(image)
|
||||
face_embed = []
|
||||
face_clipvision = []
|
||||
|
||||
for i in range(face_img.shape[0]):
|
||||
for size in [(size, size) for size in range(640, 128, -64)]:
|
||||
insightface.det_model.input_size = size # TODO: hacky but seems to be working
|
||||
insightface.det_model.input_size = size # TODO: hacky but seems to be working
|
||||
face = insightface.get(face_img[i])
|
||||
if face:
|
||||
face_embed.append(torch.from_numpy(face[0].normed_embedding).unsqueeze(0))
|
||||
@@ -692,7 +675,7 @@ class IPAdapterApply:
|
||||
clip_embed_zeroed = clip_vision.encode_image(neg_image).penultimate_hidden_states
|
||||
else:
|
||||
clip_embed_zeroed = zeroed_hidden_states(clip_vision, image.shape[0])
|
||||
|
||||
|
||||
# TODO: check noise to the uncods too
|
||||
face_embed_zeroed = torch.zeros_like(face_embed)
|
||||
else:
|
||||
@@ -704,7 +687,7 @@ class IPAdapterApply:
|
||||
|
||||
clip_embed = clip_vision.encode_image(image)
|
||||
neg_image = image_add_noise(image, noise) if noise > 0 else None
|
||||
|
||||
|
||||
if self.is_plus:
|
||||
clip_embed = clip_embed.penultimate_hidden_states
|
||||
if noise > 0:
|
||||
@@ -732,7 +715,7 @@ class IPAdapterApply:
|
||||
is_faceid=self.is_faceid,
|
||||
is_instant_id=self.is_instant_id
|
||||
)
|
||||
|
||||
|
||||
self.ipadapter.to(self.device, dtype=self.dtype)
|
||||
|
||||
if self.is_instant_id:
|
||||
@@ -777,21 +760,21 @@ class IPAdapterApply:
|
||||
}
|
||||
|
||||
if not self.is_sdxl:
|
||||
for id in [1,2,4,5,7,8]: # id of input_blocks that have cross attention
|
||||
for id in [1, 2, 4, 5, 7, 8]: # id of input_blocks that have cross attention
|
||||
set_model_patch_replace(work_model, patch_kwargs, ("input", id))
|
||||
patch_kwargs["number"] += 1
|
||||
for id in [3,4,5,6,7,8,9,10,11]: # id of output_blocks that have cross attention
|
||||
for id in [3, 4, 5, 6, 7, 8, 9, 10, 11]: # id of output_blocks that have cross attention
|
||||
set_model_patch_replace(work_model, patch_kwargs, ("output", id))
|
||||
patch_kwargs["number"] += 1
|
||||
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0))
|
||||
else:
|
||||
for id in [4,5,7,8]: # id of input_blocks that have cross attention
|
||||
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
|
||||
for id in [4, 5, 7, 8]: # id of input_blocks that have cross attention
|
||||
block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth
|
||||
for index in block_indices:
|
||||
set_model_patch_replace(work_model, patch_kwargs, ("input", id, index))
|
||||
patch_kwargs["number"] += 1
|
||||
for id in range(6): # id of output_blocks that have cross attention
|
||||
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
|
||||
for id in range(6): # id of output_blocks that have cross attention
|
||||
block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth
|
||||
for index in block_indices:
|
||||
set_model_patch_replace(work_model, patch_kwargs, ("output", id, index))
|
||||
patch_kwargs["number"] += 1
|
||||
@@ -799,35 +782,37 @@ class IPAdapterApply:
|
||||
set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index))
|
||||
patch_kwargs["number"] += 1
|
||||
|
||||
return (work_model, )
|
||||
return (work_model,)
|
||||
|
||||
|
||||
class IPAdapterApplyFaceID(IPAdapterApply):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"ipadapter": ("IPADAPTER", ),
|
||||
"ipadapter": ("IPADAPTER",),
|
||||
"clip_vision": ("CLIP_VISION",),
|
||||
"insightface": ("INSIGHTFACE",),
|
||||
"image": ("IMAGE",),
|
||||
"model": ("MODEL", ),
|
||||
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
|
||||
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
||||
"weight_type": (["original", "linear", "channel penalty"], ),
|
||||
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
||||
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
||||
"faceid_v2": ("BOOLEAN", { "default": False }),
|
||||
"weight_v2": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
|
||||
"unfold_batch": ("BOOLEAN", { "default": False }),
|
||||
"model": ("MODEL",),
|
||||
"weight": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}),
|
||||
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"weight_type": (["original", "linear", "channel penalty"],),
|
||||
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
||||
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
||||
"faceid_v2": ("BOOLEAN", {"default": False}),
|
||||
"weight_v2": ("FLOAT", {"default": 1.0, "min": -1, "max": 3, "step": 0.05}),
|
||||
"unfold_batch": ("BOOLEAN", {"default": False}),
|
||||
},
|
||||
"optional": {
|
||||
"attn_mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
|
||||
def prepImage(image, interpolation="LANCZOS", crop_position="center", size=(224,224), sharpening=0.0, padding=0):
|
||||
|
||||
def prepImage(image, interpolation="LANCZOS", crop_position="center", size=(224, 224), sharpening=0.0, padding=0):
|
||||
_, oh, ow, _ = image.shape
|
||||
output = image.permute([0,3,1,2])
|
||||
output = image.permute([0, 3, 1, 2])
|
||||
|
||||
if "pad" in crop_position:
|
||||
target_length = max(oh, ow)
|
||||
@@ -838,19 +823,19 @@ def prepImage(image, interpolation="LANCZOS", crop_position="center", size=(224,
|
||||
output = F.pad(output, (pad_l, pad_r, pad_t, pad_b), value=0, mode="constant")
|
||||
else:
|
||||
crop_size = min(oh, ow)
|
||||
x = (ow-crop_size) // 2
|
||||
y = (oh-crop_size) // 2
|
||||
x = (ow - crop_size) // 2
|
||||
y = (oh - crop_size) // 2
|
||||
if "top" in crop_position:
|
||||
y = 0
|
||||
elif "bottom" in crop_position:
|
||||
y = oh-crop_size
|
||||
y = oh - crop_size
|
||||
elif "left" in crop_position:
|
||||
x = 0
|
||||
elif "right" in crop_position:
|
||||
x = ow-crop_size
|
||||
|
||||
x2 = x+crop_size
|
||||
y2 = y+crop_size
|
||||
x = ow - crop_size
|
||||
|
||||
x2 = x + crop_size
|
||||
y2 = y + crop_size
|
||||
|
||||
# crop
|
||||
output = output[:, :, y:y2, x:x2]
|
||||
@@ -862,18 +847,19 @@ def prepImage(image, interpolation="LANCZOS", crop_position="center", size=(224,
|
||||
img = img.resize(size, resample=Image.Resampling[interpolation])
|
||||
imgs.append(TT.ToTensor()(img))
|
||||
output = torch.stack(imgs, dim=0)
|
||||
imgs = None # zelous GC
|
||||
|
||||
imgs = None # zelous GC
|
||||
|
||||
if sharpening > 0:
|
||||
output = contrast_adaptive_sharpening(output, sharpening)
|
||||
|
||||
|
||||
if padding > 0:
|
||||
output = F.pad(output, (padding, padding, padding, padding), value=255, mode="constant")
|
||||
|
||||
output = output.permute([0,2,3,1])
|
||||
output = output.permute([0, 2, 3, 1])
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class PrepImageForInsightFace:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
@@ -881,8 +867,8 @@ class PrepImageForInsightFace:
|
||||
"image": ("IMAGE",),
|
||||
"crop_position": (["center", "top", "bottom", "left", "right"],),
|
||||
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}),
|
||||
"pad_around": ("BOOLEAN", { "default": True }),
|
||||
},
|
||||
"pad_around": ("BOOLEAN", {"default": True}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
@@ -899,7 +885,8 @@ class PrepImageForInsightFace:
|
||||
size = (640, 640)
|
||||
output = prepImage(image, "LANCZOS", crop_position, size, sharpening, padding)
|
||||
|
||||
return (output, )
|
||||
return (output,)
|
||||
|
||||
|
||||
class PrepImageForClipVision:
|
||||
@classmethod
|
||||
@@ -909,7 +896,7 @@ class PrepImageForClipVision:
|
||||
"interpolation": (["LANCZOS", "BICUBIC", "HAMMING", "BILINEAR", "BOX", "NEAREST"],),
|
||||
"crop_position": (["top", "bottom", "left", "right", "center", "pad"],),
|
||||
"sharpening": ("FLOAT", {"default": 0.0, "min": 0, "max": 1, "step": 0.05}),
|
||||
},
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("IMAGE",)
|
||||
@@ -920,7 +907,8 @@ class PrepImageForClipVision:
|
||||
def prep_image(self, image, interpolation="LANCZOS", crop_position="center", sharpening=0.0):
|
||||
size = (224, 224)
|
||||
output = prepImage(image, interpolation, crop_position, size, sharpening, 0)
|
||||
return (output, )
|
||||
return (output,)
|
||||
|
||||
|
||||
class IPAdapterEncoder:
|
||||
@classmethod
|
||||
@@ -928,17 +916,17 @@ class IPAdapterEncoder:
|
||||
return {"required": {
|
||||
"clip_vision": ("CLIP_VISION",),
|
||||
"image_1": ("IMAGE",),
|
||||
"ipadapter_plus": ("BOOLEAN", { "default": False }),
|
||||
"noise": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01 }),
|
||||
"weight_1": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
|
||||
},
|
||||
"ipadapter_plus": ("BOOLEAN", {"default": False}),
|
||||
"noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
||||
"weight_1": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
},
|
||||
"optional": {
|
||||
"image_2": ("IMAGE",),
|
||||
"image_3": ("IMAGE",),
|
||||
"image_4": ("IMAGE",),
|
||||
"weight_2": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
|
||||
"weight_3": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
|
||||
"weight_4": ("FLOAT", { "default": 1.0, "min": 0, "max": 1.0, "step": 0.01 }),
|
||||
"weight_2": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"weight_3": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
"weight_4": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||
}
|
||||
}
|
||||
|
||||
@@ -953,27 +941,27 @@ class IPAdapterEncoder:
|
||||
weight_4 *= (0.1 + (weight_4 - 0.1))
|
||||
|
||||
image = image_1
|
||||
weight = [weight_1]*image_1.shape[0]
|
||||
|
||||
weight = [weight_1] * image_1.shape[0]
|
||||
|
||||
if image_2 is not None:
|
||||
if image_1.shape[1:] != image_2.shape[1:]:
|
||||
image_2 = ldm_patched.modules.utils.common_upscale(image_2.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
|
||||
image_2 = adaptive_resize(image_2.movedim(-1, 1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1, -1)
|
||||
image = torch.cat((image, image_2), dim=0)
|
||||
weight += [weight_2]*image_2.shape[0]
|
||||
weight += [weight_2] * image_2.shape[0]
|
||||
if image_3 is not None:
|
||||
if image.shape[1:] != image_3.shape[1:]:
|
||||
image_3 = ldm_patched.modules.utils.common_upscale(image_3.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
|
||||
image_3 = adaptive_resize(image_3.movedim(-1, 1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1, -1)
|
||||
image = torch.cat((image, image_3), dim=0)
|
||||
weight += [weight_3]*image_3.shape[0]
|
||||
weight += [weight_3] * image_3.shape[0]
|
||||
if image_4 is not None:
|
||||
if image.shape[1:] != image_4.shape[1:]:
|
||||
image_4 = ldm_patched.modules.utils.common_upscale(image_4.movedim(-1,1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1,-1)
|
||||
image_4 = adaptive_resize(image_4.movedim(-1, 1), image.shape[2], image.shape[1], "bilinear", "center").movedim(1, -1)
|
||||
image = torch.cat((image, image_4), dim=0)
|
||||
weight += [weight_4]*image_4.shape[0]
|
||||
|
||||
weight += [weight_4] * image_4.shape[0]
|
||||
|
||||
clip_embed = clip_vision.encode_image(image)
|
||||
neg_image = image_add_noise(image, noise) if noise > 0 else None
|
||||
|
||||
|
||||
if ipadapter_plus:
|
||||
clip_embed = clip_embed.penultimate_hidden_states
|
||||
if noise > 0:
|
||||
@@ -990,113 +978,7 @@ class IPAdapterEncoder:
|
||||
if any(e != 1.0 for e in weight):
|
||||
weight = torch.tensor(weight).unsqueeze(-1) if not ipadapter_plus else torch.tensor(weight).unsqueeze(-1).unsqueeze(-1)
|
||||
clip_embed = clip_embed * weight
|
||||
|
||||
|
||||
output = torch.stack((clip_embed, clip_embed_zeroed))
|
||||
|
||||
return( output, )
|
||||
|
||||
class IPAdapterApplyEncoded(IPAdapterApply):
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {
|
||||
"required": {
|
||||
"ipadapter": ("IPADAPTER", ),
|
||||
"embeds": ("EMBEDS",),
|
||||
"model": ("MODEL", ),
|
||||
"weight": ("FLOAT", { "default": 1.0, "min": -1, "max": 3, "step": 0.05 }),
|
||||
"weight_type": (["original", "linear", "channel penalty"], ),
|
||||
"start_at": ("FLOAT", { "default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
||||
"end_at": ("FLOAT", { "default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }),
|
||||
"unfold_batch": ("BOOLEAN", { "default": False }),
|
||||
},
|
||||
"optional": {
|
||||
"attn_mask": ("MASK",),
|
||||
}
|
||||
}
|
||||
|
||||
class IPAdapterSaveEmbeds:
|
||||
def __init__(self):
|
||||
self.output_dir = folder_paths.get_output_directory()
|
||||
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"embeds": ("EMBEDS",),
|
||||
"filename_prefix": ("STRING", {"default": "embeds/IPAdapter"})
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ()
|
||||
FUNCTION = "save"
|
||||
OUTPUT_NODE = True
|
||||
CATEGORY = "ipadapter"
|
||||
|
||||
def save(self, embeds, filename_prefix):
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
||||
file = f"{filename}_{counter:05}_.ipadpt"
|
||||
file = os.path.join(full_output_folder, file)
|
||||
|
||||
torch.save(embeds, file)
|
||||
return (None, )
|
||||
|
||||
|
||||
class IPAdapterLoadEmbeds:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
input_dir = folder_paths.get_input_directory()
|
||||
files = [os.path.relpath(os.path.join(root, file), input_dir) for root, dirs, files in os.walk(input_dir) for file in files if file.endswith('.ipadpt')]
|
||||
return {"required": {"embeds": [sorted(files), ]}, }
|
||||
|
||||
RETURN_TYPES = ("EMBEDS", )
|
||||
FUNCTION = "load"
|
||||
CATEGORY = "ipadapter"
|
||||
|
||||
def load(self, embeds):
|
||||
path = folder_paths.get_annotated_filepath(embeds)
|
||||
output = torch.load(path).cpu()
|
||||
|
||||
return (output, )
|
||||
|
||||
|
||||
class IPAdapterBatchEmbeds:
|
||||
@classmethod
|
||||
def INPUT_TYPES(s):
|
||||
return {"required": {
|
||||
"embed1": ("EMBEDS",),
|
||||
"embed2": ("EMBEDS",),
|
||||
}}
|
||||
|
||||
RETURN_TYPES = ("EMBEDS",)
|
||||
FUNCTION = "batch"
|
||||
CATEGORY = "ipadapter"
|
||||
|
||||
def batch(self, embed1, embed2):
|
||||
return (torch.cat((embed1, embed2), dim=1), )
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"IPAdapterModelLoader": IPAdapterModelLoader,
|
||||
"IPAdapterApply": IPAdapterApply,
|
||||
"IPAdapterApplyFaceID": IPAdapterApplyFaceID,
|
||||
"IPAdapterApplyEncoded": IPAdapterApplyEncoded,
|
||||
"PrepImageForClipVision": PrepImageForClipVision,
|
||||
"IPAdapterEncoder": IPAdapterEncoder,
|
||||
"IPAdapterSaveEmbeds": IPAdapterSaveEmbeds,
|
||||
"IPAdapterLoadEmbeds": IPAdapterLoadEmbeds,
|
||||
"IPAdapterBatchEmbeds": IPAdapterBatchEmbeds,
|
||||
"InsightFaceLoader": InsightFaceLoader,
|
||||
"PrepImageForInsightFace": PrepImageForInsightFace,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"IPAdapterModelLoader": "Load IPAdapter Model",
|
||||
"IPAdapterApply": "Apply IPAdapter",
|
||||
"IPAdapterApplyFaceID": "Apply IPAdapter FaceID",
|
||||
"IPAdapterApplyEncoded": "Apply IPAdapter from Encoded",
|
||||
"PrepImageForClipVision": "Prepare Image For Clip Vision",
|
||||
"IPAdapterEncoder": "Encode IPAdapter Image",
|
||||
"IPAdapterSaveEmbeds": "Save IPAdapter Embeds",
|
||||
"IPAdapterLoadEmbeds": "Load IPAdapter Embeds",
|
||||
"IPAdapterBatchEmbeds": "IPAdapter Batch Embeds",
|
||||
"InsightFaceLoader": "Load InsightFace",
|
||||
"PrepImageForInsightFace": "Prepare Image For InsightFace",
|
||||
}
|
||||
return (output,)
|
||||
|
||||
Reference in New Issue
Block a user