mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-02 06:19:47 +00:00
add sd2 template
This commit is contained in:
81
backend/diffusion_engine/sd20.py
Normal file
81
backend/diffusion_engine/sd20.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import torch
|
||||
|
||||
from huggingface_guess import model_list
|
||||
from backend.diffusion_engine.base import ForgeDiffusionEngine, ForgeObjects
|
||||
from backend.patcher.clip import CLIP
|
||||
from backend.patcher.vae import VAE
|
||||
from backend.patcher.unet import UnetPatcher
|
||||
from backend.text_processing.classic_engine import ClassicTextProcessingEngine
|
||||
from backend.args import dynamic_args
|
||||
from backend import memory_management
|
||||
|
||||
|
||||
class StableDiffusion2(ForgeDiffusionEngine):
|
||||
matched_guesses = [model_list.SD20]
|
||||
|
||||
def __init__(self, estimated_config, huggingface_components):
|
||||
super().__init__(estimated_config, huggingface_components)
|
||||
|
||||
clip = CLIP(
|
||||
model_dict={
|
||||
'clip_h': huggingface_components['text_encoder']
|
||||
},
|
||||
tokenizer_dict={
|
||||
'clip_h': huggingface_components['tokenizer']
|
||||
}
|
||||
)
|
||||
|
||||
vae = VAE(model=huggingface_components['vae'])
|
||||
|
||||
unet = UnetPatcher.from_model(
|
||||
model=huggingface_components['unet'],
|
||||
diffusers_scheduler=huggingface_components['scheduler']
|
||||
)
|
||||
|
||||
self.text_processing_engine = ClassicTextProcessingEngine(
|
||||
text_encoder=clip.cond_stage_model.clip_h,
|
||||
tokenizer=clip.tokenizer.clip_h,
|
||||
embedding_dir=dynamic_args['embedding_dir'],
|
||||
embedding_key='clip_h',
|
||||
embedding_expected_shape=1024,
|
||||
emphasis_name=dynamic_args['emphasis_name'],
|
||||
text_projection=False,
|
||||
minimal_clip_skip=1,
|
||||
clip_skip=1,
|
||||
return_pooled=False,
|
||||
final_layer_norm=True,
|
||||
)
|
||||
|
||||
self.forge_objects = ForgeObjects(unet=unet, clip=clip, vae=vae, clipvision=None)
|
||||
self.forge_objects_original = self.forge_objects.shallow_copy()
|
||||
self.forge_objects_after_applying_lora = self.forge_objects.shallow_copy()
|
||||
|
||||
# WebUI Legacy
|
||||
self.is_sd2 = True
|
||||
self.first_stage_model = vae.first_stage_model
|
||||
|
||||
def set_clip_skip(self, clip_skip):
|
||||
self.text_processing_engine.clip_skip = clip_skip
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_learned_conditioning(self, prompt: list[str]):
|
||||
memory_management.load_model_gpu(self.forge_objects.clip.patcher)
|
||||
cond = self.text_processing_engine(prompt)
|
||||
return cond
|
||||
|
||||
@torch.inference_mode()
|
||||
def get_prompt_lengths_on_ui(self, prompt):
|
||||
_, token_count = self.text_processing_engine.process_texts([prompt])
|
||||
return token_count, self.text_processing_engine.get_target_prompt_token_count(token_count)
|
||||
|
||||
@torch.inference_mode()
|
||||
def encode_first_stage(self, x):
|
||||
sample = self.forge_objects.vae.encode(x.movedim(1, -1) * 0.5 + 0.5)
|
||||
sample = self.forge_objects.vae.first_stage_model.process_in(sample)
|
||||
return sample.to(x)
|
||||
|
||||
@torch.inference_mode()
|
||||
def decode_first_stage(self, x):
|
||||
sample = self.forge_objects.vae.first_stage_model.process_out(x)
|
||||
sample = self.forge_objects.vae.decode(sample).movedim(-1, 1) * 2.0 - 1.0
|
||||
return sample.to(x)
|
||||
@@ -13,10 +13,11 @@ from backend.nn.clip import IntegratedCLIP, CLIPTextConfig
|
||||
from backend.nn.unet import IntegratedUNet2DConditionModel
|
||||
|
||||
from backend.diffusion_engine.sd15 import StableDiffusion
|
||||
from backend.diffusion_engine.sd20 import StableDiffusion2
|
||||
from backend.diffusion_engine.sdxl import StableDiffusionXL
|
||||
|
||||
|
||||
possible_models = [StableDiffusion, StableDiffusionXL]
|
||||
possible_models = [StableDiffusion, StableDiffusion2, StableDiffusionXL]
|
||||
|
||||
|
||||
logging.getLogger("diffusers").setLevel(logging.ERROR)
|
||||
|
||||
Reference in New Issue
Block a user