more attention types

This commit is contained in:
layerdiffusion
2024-08-02 03:32:19 -07:00
parent 318219bc9d
commit 3dd084d55b
5 changed files with 699 additions and 45 deletions

View File

@@ -3,7 +3,6 @@ import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--gpu-device-id", type=int, default=None, metavar="DEVICE_ID")
parser.add_argument("--disable-attention-upcast", action="store_true")
fp_group = parser.add_mutually_exclusive_group()
fp_group.add_argument("--all-in-fp32", action="store_true")
@@ -28,7 +27,17 @@ fpte_group.add_argument("--clip-in-fp8-e5m2", action="store_true")
fpte_group.add_argument("--clip-in-fp16", action="store_true")
fpte_group.add_argument("--clip-in-fp32", action="store_true")
parser.add_argument("--xformers", action="store_true")
attn_group = parser.add_mutually_exclusive_group()
attn_group.add_argument("--attention-split", action="store_true")
attn_group.add_argument("--attention-quad", action="store_true")
attn_group.add_argument("--attention-pytorch", action="store_true")
upcast = parser.add_mutually_exclusive_group()
upcast.add_argument("--force-upcast-attention", action="store_true")
upcast.add_argument("--disable-attention-upcast", action="store_true")
parser.add_argument("--disable-xformers", action="store_true")
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1)
parser.add_argument("--disable-ipex-hijack", action="store_true")

View File

@@ -1,33 +1,89 @@
import math
import torch
import einops
from backend.args import args
from backend import memory_management
from backend.misc.sub_quadratic_attention import efficient_dot_product_attention
if args.xformers:
BROKEN_XFORMERS = False
if memory_management.xformers_enabled():
import xformers
import xformers.ops
try:
x_vers = xformers.__version__
BROKEN_XFORMERS = x_vers.startswith("0.0.2") and not x_vers.startswith("0.0.20")
except:
pass
def attention_xformers(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
FORCE_UPCAST_ATTENTION_DTYPE = memory_management.force_upcast_attention_dtype()
if mask is not None:
pad = 8 - q.shape[1] % 8
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
mask_out[:, :, :mask.shape[-1]] = mask
mask = mask_out[:, :, :mask.shape[-1]]
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
def get_attn_precision(attn_precision):
if args.disable_attention_upcast:
return None
if FORCE_UPCAST_ATTENTION_DTYPE is not None:
return FORCE_UPCAST_ATTENTION_DTYPE
return attn_precision
def exists(val):
return val is not None
def attention_basic(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
attn_precision = get_attn_precision(attn_precision)
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
if attn_precision == torch.float32:
sim = torch.einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
else:
sim = torch.einsum('b i d, b j d -> b i j', q, k) * scale
del q, k
if exists(mask):
if mask.dtype == torch.bool:
mask = einops.rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = einops.repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
else:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
sim.add_(mask)
sim = sim.softmax(dim=-1)
out = torch.einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
@@ -37,56 +93,372 @@ def attention_xformers(q, k, v, heads, mask=None):
return out
def attention_pytorch(q, k, v, heads, mask=None):
b, _, dim_head = q.shape
dim_head //= heads
def attention_sub_quad(query, key, value, heads, mask=None, attn_precision=None, skip_reshape=False):
attn_precision = get_attn_precision(attn_precision)
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
if skip_reshape:
b, _, _, dim_head = query.shape
else:
b, _, dim_head = query.shape
dim_head //= heads
scale = dim_head ** -0.5
if skip_reshape:
query = query.reshape(b * heads, -1, dim_head)
value = value.reshape(b * heads, -1, dim_head)
key = key.reshape(b * heads, -1, dim_head).movedim(1, 2)
else:
query = query.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
value = value.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 1, 3).reshape(b * heads, -1, dim_head)
key = key.unsqueeze(3).reshape(b, -1, heads, dim_head).permute(0, 2, 3, 1).reshape(b * heads, dim_head, -1)
dtype = query.dtype
upcast_attention = attn_precision == torch.float32 and query.dtype != torch.float32
if upcast_attention:
bytes_per_token = torch.finfo(torch.float32).bits // 8
else:
bytes_per_token = torch.finfo(query.dtype).bits // 8
batch_x_heads, q_tokens, _ = query.shape
_, _, k_tokens = key.shape
qk_matmul_size_bytes = batch_x_heads * bytes_per_token * q_tokens * k_tokens
mem_free_total, mem_free_torch = memory_management.get_free_memory(query.device, True)
kv_chunk_size_min = None
kv_chunk_size = None
query_chunk_size = None
for x in [4096, 2048, 1024, 512, 256]:
count = mem_free_total / (batch_x_heads * bytes_per_token * x * 4.0)
if count >= k_tokens:
kv_chunk_size = k_tokens
query_chunk_size = x
break
if query_chunk_size is None:
query_chunk_size = 512
if mask is not None:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
hidden_states = efficient_dot_product_attention(
query,
key,
value,
query_chunk_size=query_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min=kv_chunk_size_min,
use_checkpoint=False,
upcast_attention=upcast_attention,
mask=mask,
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
hidden_states = hidden_states.to(dtype)
hidden_states = hidden_states.unflatten(0, (-1, heads)).transpose(1, 2).flatten(start_dim=2)
return hidden_states
def attention_split(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
attn_precision = get_attn_precision(attn_precision)
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
scale = dim_head ** -0.5
h = heads
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, -1, heads, dim_head)
.permute(0, 2, 1, 3)
.reshape(b * heads, -1, dim_head)
.contiguous(),
(q, k, v),
)
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
mem_free_total = memory_management.get_free_memory(q.device)
if attn_precision == torch.float32:
element_size = 4
upcast = True
else:
element_size = q.element_size()
upcast = False
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * element_size
modifier = 3
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
if mask is not None:
if len(mask.shape) == 2:
bs = 1
else:
bs = mask.shape[0]
mask = mask.reshape(bs, -1, mask.shape[-2], mask.shape[-1]).expand(b, heads, -1, -1).reshape(-1, mask.shape[-2], mask.shape[-1])
# print("steps", steps, mem_required, mem_free_total, modifier, q.element_size(), tensor_size)
first_op_done = False
cleared_cache = False
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
if upcast:
with torch.autocast(enabled=False, device_type='cuda'):
s1 = torch.einsum('b i d, b j d -> b i j', q[:, i:end].float(), k.float()) * scale
else:
s1 = torch.einsum('b i d, b j d -> b i j', q[:, i:end], k) * scale
if mask is not None:
if len(mask.shape) == 2:
s1 += mask[i:end]
else:
s1 += mask[:, i:end]
s2 = s1.softmax(dim=-1).to(v.dtype)
del s1
first_op_done = True
r1[:, i:end] = torch.einsum('b i j, b j d -> b i d', s2, v)
del s2
break
except memory_management.OOM_EXCEPTION as e:
if first_op_done == False:
memory_management.soft_empty_cache(True)
if cleared_cache == False:
cleared_cache = True
print("out of memory error, emptying cache and trying again")
continue
steps *= 2
if steps > 64:
raise e
print("out of memory error, increasing steps and trying again {}".format(steps))
else:
raise e
del q, k, v
r1 = (
r1.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
return r1
def attention_xformers(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
disabled_xformers = False
if BROKEN_XFORMERS:
if b * heads > 65535:
disabled_xformers = True
if not disabled_xformers:
if torch.jit.is_tracing() or torch.jit.is_scripting():
disabled_xformers = True
if disabled_xformers:
return attention_pytorch(q, k, v, heads, mask)
if skip_reshape:
q, k, v = map(
lambda t: t.reshape(b * heads, -1, dim_head),
(q, k, v),
)
else:
q, k, v = map(
lambda t: t.reshape(b, -1, heads, dim_head),
(q, k, v),
)
if mask is not None:
pad = 8 - q.shape[1] % 8
mask_out = torch.empty([q.shape[0], q.shape[1], q.shape[1] + pad], dtype=q.dtype, device=q.device)
mask_out[:, :, :mask.shape[-1]] = mask
mask = mask_out[:, :, :mask.shape[-1]]
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=mask)
if skip_reshape:
out = (
out.unsqueeze(0)
.reshape(b, heads, -1, dim_head)
.permute(0, 2, 1, 3)
.reshape(b, -1, heads * dim_head)
)
else:
out = (
out.reshape(b, -1, heads * dim_head)
)
return out
def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False):
if skip_reshape:
b, _, _, dim_head = q.shape
else:
b, _, dim_head = q.shape
dim_head //= heads
q, k, v = map(
lambda t: t.view(b, -1, heads, dim_head).transpose(1, 2),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False)
out = (
out.transpose(1, 2).reshape(b, -1, heads * dim_head)
)
return out
def attention_xformers_single_head_spatial(q, k, v):
def slice_attention_single_head_spatial(q, k, v):
r1 = torch.zeros_like(k, device=q.device)
scale = (int(q.shape[-1]) ** (-0.5))
mem_free_total = memory_management.get_free_memory(q.device)
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
while True:
try:
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = torch.bmm(q[:, i:end], k) * scale
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0, 2, 1)
del s1
r1[:, :, i:end] = torch.bmm(v, s2)
del s2
break
except memory_management.OOM_EXCEPTION as e:
memory_management.soft_empty_cache(True)
steps *= 2
if steps > 128:
raise e
print("out of memory error, increasing steps and trying again {}".format(steps))
return r1
def normal_attention_single_head_spatial(q, k, v):
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w)
q = q.permute(0, 2, 1) # b,hw,c
k = k.reshape(b, c, h * w) # b,c,hw
v = v.reshape(b, c, h * w)
r1 = slice_attention_single_head_spatial(q, k, v)
h_ = r1.reshape(b, c, h, w)
del r1
return h_
def xformers_attention_single_head_spatial(q, k, v):
# compute attention
B, C, H, W = q.shape
q, k, v = map(
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(),
(q, k, v),
)
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
out = out.transpose(1, 2).reshape(B, C, H, W)
try:
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
out = out.transpose(1, 2).reshape(B, C, H, W)
except NotImplementedError as e:
out = slice_attention_single_head_spatial(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2),
v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
return out
def attention_pytorch_single_head_spatial(q, k, v):
def pytorch_attention_single_head_spatial(q, k, v):
# compute attention
B, C, H, W = q.shape
q, k, v = map(
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v),
)
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(B, C, H, W)
try:
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
out = out.transpose(2, 3).reshape(B, C, H, W)
except memory_management.OOM_EXCEPTION as e:
print("scaled_dot_product_attention OOMed: switched to slice attention")
out = slice_attention_single_head_spatial(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2),
v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
return out
attention_function = attention_pytorch
attention_function_single_head_spatial = attention_pytorch_single_head_spatial
if args.xformers:
if memory_management.xformers_enabled():
print("Using xformers cross attention")
attention_function = attention_xformers
attention_function_single_head_spatial = attention_xformers_single_head_spatial
else:
elif memory_management.pytorch_attention_enabled():
print("Using pytorch cross attention")
attention_function = attention_pytorch
attention_function_single_head_spatial = attention_pytorch_single_head_spatial
elif args.attention_split:
print("Using split optimization for cross attention")
attention_function = attention_split
else:
print("Using sub quadratic optimization for cross attention")
attention_function = attention_sub_quad
if memory_management.xformers_enabled_vae():
print("Using xformers attention for VAE")
attention_function_single_head_spatial = xformers_attention_single_head_spatial
elif memory_management.pytorch_attention_enabled():
print("Using pytorch attention for VAE")
attention_function_single_head_spatial = pytorch_attention_single_head_spatial
else:
print("Using split attention for VAE")
attention_function_single_head_spatial = normal_attention_single_head_spatial
class AttentionProcessorForge:

View File

@@ -0,0 +1,273 @@
# original source:
# https://github.com/AminRezaei0x443/memory-efficient-attention/blob/1bc0d9e6ac5f82ea43a375135c4e1d3896ee1694/memory_efficient_attention/attention_torch.py
# license:
# MIT
# credit:
# Amin Rezaei (original author)
# Alex Birch (optimized algorithm for 3D tensors, at the expense of removing bias, masking and callbacks)
# implementation of:
# Self-attention Does Not Need O(n2) Memory":
# https://arxiv.org/abs/2112.05682v2
from functools import partial
import torch
from torch import Tensor
from torch.utils.checkpoint import checkpoint
import math
try:
from typing import Optional, NamedTuple, List, Protocol
except ImportError:
from typing import Optional, NamedTuple, List
from typing_extensions import Protocol
from torch import Tensor
from typing import List
from ldm_patched.modules import model_management
def dynamic_slice(
x: Tensor,
starts: List[int],
sizes: List[int],
) -> Tensor:
slicing = [slice(start, start + size) for start, size in zip(starts, sizes)]
return x[slicing]
class AttnChunk(NamedTuple):
exp_values: Tensor
exp_weights_sum: Tensor
max_score: Tensor
class SummarizeChunk(Protocol):
@staticmethod
def __call__(
query: Tensor,
key_t: Tensor,
value: Tensor,
) -> AttnChunk: ...
class ComputeQueryChunkAttn(Protocol):
@staticmethod
def __call__(
query: Tensor,
key_t: Tensor,
value: Tensor,
) -> Tensor: ...
def _summarize_chunk(
query: Tensor,
key_t: Tensor,
value: Tensor,
scale: float,
upcast_attention: bool,
mask,
) -> AttnChunk:
if upcast_attention:
with torch.autocast(enabled=False, device_type = 'cuda'):
query = query.float()
key_t = key_t.float()
attn_weights = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
else:
attn_weights = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach()
attn_weights -= max_score
if mask is not None:
attn_weights += mask
torch.exp(attn_weights, out=attn_weights)
exp_weights = attn_weights.to(value.dtype)
exp_values = torch.bmm(exp_weights, value)
max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
def _query_chunk_attention(
query: Tensor,
key_t: Tensor,
value: Tensor,
summarize_chunk: SummarizeChunk,
kv_chunk_size: int,
mask,
) -> Tensor:
batch_x_heads, k_channels_per_head, k_tokens = key_t.shape
_, _, v_channels_per_head = value.shape
def chunk_scanner(chunk_idx: int, mask) -> AttnChunk:
key_chunk = dynamic_slice(
key_t,
(0, 0, chunk_idx),
(batch_x_heads, k_channels_per_head, kv_chunk_size)
)
value_chunk = dynamic_slice(
value,
(0, chunk_idx, 0),
(batch_x_heads, kv_chunk_size, v_channels_per_head)
)
if mask is not None:
mask = mask[:,:,chunk_idx:chunk_idx + kv_chunk_size]
return summarize_chunk(query, key_chunk, value_chunk, mask=mask)
chunks: List[AttnChunk] = [
chunk_scanner(chunk, mask) for chunk in torch.arange(0, k_tokens, kv_chunk_size)
]
acc_chunk = AttnChunk(*map(torch.stack, zip(*chunks)))
chunk_values, chunk_weights, chunk_max = acc_chunk
global_max, _ = torch.max(chunk_max, 0, keepdim=True)
max_diffs = torch.exp(chunk_max - global_max)
chunk_values *= torch.unsqueeze(max_diffs, -1)
chunk_weights *= max_diffs
all_values = chunk_values.sum(dim=0)
all_weights = torch.unsqueeze(chunk_weights, -1).sum(dim=0)
return all_values / all_weights
# TODO: refactor CrossAttention#get_attention_scores to share code with this
def _get_attention_scores_no_kv_chunking(
query: Tensor,
key_t: Tensor,
value: Tensor,
scale: float,
upcast_attention: bool,
mask,
) -> Tensor:
if upcast_attention:
with torch.autocast(enabled=False, device_type = 'cuda'):
query = query.float()
key_t = key_t.float()
attn_scores = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
else:
attn_scores = torch.baddbmm(
torch.empty(1, 1, 1, device=query.device, dtype=query.dtype),
query,
key_t,
alpha=scale,
beta=0,
)
if mask is not None:
attn_scores += mask
try:
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
except model_management.OOM_EXCEPTION:
print("ran out of memory while running softmax in _get_attention_scores_no_kv_chunking, trying slower in place softmax instead")
attn_scores -= attn_scores.max(dim=-1, keepdim=True).values
torch.exp(attn_scores, out=attn_scores)
summed = torch.sum(attn_scores, dim=-1, keepdim=True)
attn_scores /= summed
attn_probs = attn_scores
hidden_states_slice = torch.bmm(attn_probs.to(value.dtype), value)
return hidden_states_slice
class ScannedChunk(NamedTuple):
chunk_idx: int
attn_chunk: AttnChunk
def efficient_dot_product_attention(
query: Tensor,
key_t: Tensor,
value: Tensor,
query_chunk_size=1024,
kv_chunk_size: Optional[int] = None,
kv_chunk_size_min: Optional[int] = None,
use_checkpoint=True,
upcast_attention=False,
mask = None,
):
"""Computes efficient dot-product attention given query, transposed key, and value.
This is efficient version of attention presented in
https://arxiv.org/abs/2112.05682v2 which comes with O(sqrt(n)) memory requirements.
Args:
query: queries for calculating attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
key_t: keys for calculating attention with shape of
`[batch * num_heads, channels_per_head, tokens]`.
value: values to be used in attention with shape of
`[batch * num_heads, tokens, channels_per_head]`.
query_chunk_size: int: query chunks size
kv_chunk_size: Optional[int]: key/value chunks size. if None: defaults to sqrt(key_tokens)
kv_chunk_size_min: Optional[int]: key/value minimum chunk size. only considered when kv_chunk_size is None. changes `sqrt(key_tokens)` into `max(sqrt(key_tokens), kv_chunk_size_min)`, to ensure our chunk sizes don't get too small (smaller chunks = more chunks = less concurrent work done).
use_checkpoint: bool: whether to use checkpointing (recommended True for training, False for inference)
Returns:
Output of shape `[batch * num_heads, query_tokens, channels_per_head]`.
"""
batch_x_heads, q_tokens, q_channels_per_head = query.shape
_, _, k_tokens = key_t.shape
scale = q_channels_per_head ** -0.5
kv_chunk_size = min(kv_chunk_size or int(math.sqrt(k_tokens)), k_tokens)
if kv_chunk_size_min is not None:
kv_chunk_size = max(kv_chunk_size, kv_chunk_size_min)
if mask is not None and len(mask.shape) == 2:
mask = mask.unsqueeze(0)
def get_query_chunk(chunk_idx: int) -> Tensor:
return dynamic_slice(
query,
(0, chunk_idx, 0),
(batch_x_heads, min(query_chunk_size, q_tokens), q_channels_per_head)
)
def get_mask_chunk(chunk_idx: int) -> Tensor:
if mask is None:
return None
chunk = min(query_chunk_size, q_tokens)
return mask[:,chunk_idx:chunk_idx + chunk]
summarize_chunk: SummarizeChunk = partial(_summarize_chunk, scale=scale, upcast_attention=upcast_attention)
summarize_chunk: SummarizeChunk = partial(checkpoint, summarize_chunk) if use_checkpoint else summarize_chunk
compute_query_chunk_attn: ComputeQueryChunkAttn = partial(
_get_attention_scores_no_kv_chunking,
scale=scale,
upcast_attention=upcast_attention
) if k_tokens <= kv_chunk_size else (
# fast-path for when there's just 1 key-value chunk per query chunk (this is just sliced attention btw)
partial(
_query_chunk_attention,
kv_chunk_size=kv_chunk_size,
summarize_chunk=summarize_chunk,
)
)
if q_tokens <= query_chunk_size:
# fast-path for when there's just 1 query chunk
return compute_query_chunk_attn(
query=query,
key_t=key_t,
value=value,
mask=mask,
)
# TODO: maybe we should use torch.empty_like(query) to allocate storage in-advance,
# and pass slices to be mutated, instead of torch.cat()ing the returned slices
res = torch.cat([
compute_query_chunk_attn(
query=get_query_chunk(i * query_chunk_size),
key_t=key_t,
value=value,
mask=get_mask_chunk(i * query_chunk_size)
) for i in range(math.ceil(q_tokens / query_chunk_size))
], dim=1)
return res

View File

@@ -47,19 +47,19 @@ def initialize_forge():
from modules_forge.cuda_malloc import try_cuda_malloc
try_cuda_malloc()
import ldm_patched.modules.model_management as model_management
from backend import memory_management
import torch
monitor_module_moving()
device = model_management.get_torch_device()
device = memory_management.get_torch_device()
torch.zeros((1, 1)).to(device, torch.float32)
model_management.soft_empty_cache()
memory_management.soft_empty_cache()
import modules_forge.patch_basic
modules_forge.patch_basic.patch_all_basics()
from modules_forge import stream
from backend import stream
print('CUDA Stream Activated: ', stream.using_stream)
from modules_forge.shared import diffusers_dir

View File

@@ -1,6 +1,6 @@
import torch
import os
import safetensors
import safetensors.torch
def build_loaded(module, loader_name):