Free WebUI from its Prison

Congratulations WebUI. Say Hello to freedom.
This commit is contained in:
layerdiffusion
2024-08-05 03:21:28 -07:00
parent 46442f90a2
commit 62c11fdc71
11 changed files with 1297 additions and 1318 deletions

View File

@@ -7,7 +7,6 @@ import torch
import modules.scripts as scripts
from modules import shared, script_callbacks, masking, images
from modules.ui_components import InputAccordion
from modules.api.api import decode_base64_to_image
import gradio as gr
from lib_controlnet import global_state, external_code

View File

@@ -24,7 +24,6 @@ from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusion
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import Any
@@ -725,7 +724,7 @@ class Api:
def get_sd_models(self):
import modules.sd_models as sd_models
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in sd_models.checkpoints_list.values()]
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename} for x in sd_models.checkpoints_list.values()]
def get_sd_vaes(self):
import modules.sd_vae as sd_vae

View File

@@ -10,16 +10,6 @@ from threading import Thread
from modules.timer import startup_timer
class HiddenPrints:
def __enter__(self):
self._original_stdout = sys.stdout
sys.stdout = open(os.devnull, 'w')
def __exit__(self, exc_type, exc_val, exc_tb):
sys.stdout.close()
sys.stdout = self._original_stdout
def imports():
logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
@@ -35,16 +25,8 @@ def imports():
import gradio # noqa: F401
startup_timer.record("import gradio")
with HiddenPrints():
from modules import paths, timer, import_hook, errors # noqa: F401
startup_timer.record("setup paths")
import ldm.modules.encoders.modules # noqa: F401
import ldm.modules.diffusionmodules.model
startup_timer.record("import ldm")
import sgm.modules.encoders.modules # noqa: F401
startup_timer.record("import sgm")
from modules import paths, timer, import_hook, errors # noqa: F401
startup_timer.record("setup paths")
from modules import shared_init
shared_init.initialize()
@@ -141,11 +123,6 @@ def initialize_rest(*, reload_script_modules=False):
textual_inversion.textual_inversion.list_textual_inversion_templates()
startup_timer.record("refresh textual inversion templates")
from modules import script_callbacks, sd_hijack_optimizations, sd_hijack
script_callbacks.on_list_optimizers(sd_hijack_optimizations.list_optimizers)
sd_hijack.list_optimizers()
startup_timer.record("scripts list_optimizers")
from modules import sd_unet
sd_unet.list_unets()
startup_timer.record("scripts list_unets")

View File

@@ -391,15 +391,15 @@ def prepare_environment():
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "https://github.com/mlfoundations/open_clip/archive/bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b.zip")
assets_repo = os.environ.get('ASSETS_REPO', "https://github.com/AUTOMATIC1111/stable-diffusion-webui-assets.git")
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
stable_diffusion_xl_repo = os.environ.get('STABLE_DIFFUSION_XL_REPO', "https://github.com/Stability-AI/generative-models.git")
# stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
# stable_diffusion_xl_repo = os.environ.get('STABLE_DIFFUSION_XL_REPO', "https://github.com/Stability-AI/generative-models.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
huggingface_guess_repo = os.environ.get('HUGGINGFACE_GUESS_REPO', 'https://github.com/lllyasviel/huggingface_guess.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
assets_commit_hash = os.environ.get('ASSETS_COMMIT_HASH', "6f7db241d2f8ba7457bac5ca9753331f0c266917")
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "45c443b316737a4ab6e40413d7794a7f5657c19f")
# stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "cf1d67a6fd5ea1aa600c4df58e5b47da45f6bdbf")
# stable_diffusion_xl_commit_hash = os.environ.get('STABLE_DIFFUSION_XL_COMMIT_HASH', "45c443b316737a4ab6e40413d7794a7f5657c19f")
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "ab527a9a6d347f364e3d185ba6d714e22d80cb3c")
huggingface_guess_commit_hash = os.environ.get('HUGGINGFACE_GUESS_HASH', "78f7d1da6a00721a6670e33a9132fd73c4e987b4")
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
@@ -456,8 +456,8 @@ def prepare_environment():
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
git_clone(assets_repo, repo_dir('stable-diffusion-webui-assets'), "assets", assets_commit_hash)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(stable_diffusion_xl_repo, repo_dir('generative-models'), "Stable Diffusion XL", stable_diffusion_xl_commit_hash)
# git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
# git_clone(stable_diffusion_xl_repo, repo_dir('generative-models'), "Stable Diffusion XL", stable_diffusion_xl_commit_hash)
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone(huggingface_guess_repo, repo_dir('huggingface_guess'), "huggingface_guess", huggingface_guess_commit_hash)
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)

View File

@@ -36,8 +36,8 @@ assert sd_path is not None, f"Couldn't find Stable Diffusion in any of: {possibl
mute_sdxl_imports()
path_dirs = [
(sd_path, 'ldm', 'Stable Diffusion', []),
(os.path.join(sd_path, '../generative-models'), 'sgm', 'Stable Diffusion XL', ["sgm"]),
# (sd_path, 'ldm', 'Stable Diffusion', []),
# (os.path.join(sd_path, '../generative-models'), 'sgm', 'Stable Diffusion XL', ["sgm"]),
(os.path.join(sd_path, '../BLIP'), 'models/blip.py', 'BLIP', []),
(os.path.join(sd_path, '../k-diffusion'), 'k_diffusion/sampling.py', 'k_diffusion', ["atstart"]),
(os.path.join(sd_path, '../huggingface_guess'), 'huggingface_guess/detection.py', 'huggingface_guess', []),
@@ -53,13 +53,13 @@ for d, must_exist, what, options in path_dirs:
d = os.path.abspath(d)
if "atstart" in options:
sys.path.insert(0, d)
elif "sgm" in options:
# Stable Diffusion XL repo has scripts dir with __init__.py in it which ruins every extension's scripts dir, so we
# import sgm and remove it from sys.path so that when a script imports scripts.something, it doesbn't use sgm's scripts dir.
sys.path.insert(0, d)
import sgm # noqa: F401
sys.path.pop(0)
# elif "sgm" in options:
# # Stable Diffusion XL repo has scripts dir with __init__.py in it which ruins every extension's scripts dir, so we
# # import sgm and remove it from sys.path so that when a script imports scripts.something, it doesbn't use sgm's scripts dir.
#
# sys.path.insert(0, d)
# import sgm # noqa: F401
# sys.path.pop(0)
else:
sys.path.append(d)
paths[what] = d

View File

@@ -1,124 +1,3 @@
import torch
from torch.nn.functional import silu
from types import MethodType
from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet, patches
from modules.hypernetworks import hypernetwork
from modules.shared import cmd_opts
from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18
import ldm.modules.attention
import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
import ldm.models.diffusion.ddpm
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import ldm.modules.encoders.modules
import sgm.modules.attention
import sgm.modules.diffusionmodules.model
import sgm.modules.diffusionmodules.openaimodel
import sgm.modules.encoders.modules
attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
# new memory efficient cross attention blocks do not support hypernets and we already
# have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
# silence new console spam from SD2
ldm.modules.attention.print = shared.ldm_print
ldm.modules.diffusionmodules.model.print = shared.ldm_print
ldm.util.print = shared.ldm_print
ldm.models.diffusion.ddpm.print = shared.ldm_print
optimizers = []
current_optimizer: sd_hijack_optimizations.SdOptimization = None
ldm_patched_forward = sd_unet.create_unet_forward(ldm.modules.diffusionmodules.openaimodel.UNetModel.forward)
ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", ldm_patched_forward)
sgm_patched_forward = sd_unet.create_unet_forward(sgm.modules.diffusionmodules.openaimodel.UNetModel.forward)
sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sgm_patched_forward)
def list_optimizers():
new_optimizers = script_callbacks.list_optimizers_callback()
new_optimizers = [x for x in new_optimizers if x.is_available()]
new_optimizers = sorted(new_optimizers, key=lambda x: x.priority, reverse=True)
optimizers.clear()
optimizers.extend(new_optimizers)
def apply_optimizations(option=None):
return
def undo_optimizations():
return
def fix_checkpoint():
"""checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
checkpoints to be added when not training (there's a warning)"""
pass
def weighted_loss(sd_model, pred, target, mean=True):
#Calculate the weight normally, but ignore the mean
loss = sd_model._old_get_loss(pred, target, mean=False)
#Check if we have weights available
weight = getattr(sd_model, '_custom_loss_weight', None)
if weight is not None:
loss *= weight
#Return the loss, as mean if specified
return loss.mean() if mean else loss
def weighted_forward(sd_model, x, c, w, *args, **kwargs):
try:
#Temporarily append weights to a place accessible during loss calc
sd_model._custom_loss_weight = w
#Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
#Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
if not hasattr(sd_model, '_old_get_loss'):
sd_model._old_get_loss = sd_model.get_loss
sd_model.get_loss = MethodType(weighted_loss, sd_model)
#Run the standard forward function, but with the patched 'get_loss'
return sd_model.forward(x, c, *args, **kwargs)
finally:
try:
#Delete temporary weights if appended
del sd_model._custom_loss_weight
except AttributeError:
pass
#If we have an old loss function, reset the loss function to the original one
if hasattr(sd_model, '_old_get_loss'):
sd_model.get_loss = sd_model._old_get_loss
del sd_model._old_get_loss
def apply_weighted_forward(sd_model):
#Add new function 'weighted_forward' that can be called to calc weighted loss
sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
def undo_weighted_forward(sd_model):
try:
del sd_model.weighted_forward
except AttributeError:
pass
class StableDiffusionModelHijack:
fixes = None
layers = None
@@ -156,74 +35,201 @@ class StableDiffusionModelHijack:
pass
class EmbeddingsWithFixes(torch.nn.Module):
def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
super().__init__()
self.wrapped = wrapped
self.embeddings = embeddings
self.textual_inversion_key = textual_inversion_key
self.weight = self.wrapped.weight
def forward(self, input_ids):
batch_fixes = self.embeddings.fixes
self.embeddings.fixes = None
inputs_embeds = self.wrapped(input_ids)
if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
return inputs_embeds
vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
emb = devices.cond_cast_unet(vec)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
vecs.append(tensor)
return torch.stack(vecs)
class TextualInversionEmbeddings(torch.nn.Embedding):
def __init__(self, num_embeddings: int, embedding_dim: int, textual_inversion_key='clip_l', **kwargs):
super().__init__(num_embeddings, embedding_dim, **kwargs)
self.embeddings = model_hijack
self.textual_inversion_key = textual_inversion_key
@property
def wrapped(self):
return super().forward
def forward(self, input_ids):
return EmbeddingsWithFixes.forward(self, input_ids)
def add_circular_option_to_conv_2d():
conv2d_constructor = torch.nn.Conv2d.__init__
def conv2d_constructor_circular(self, *args, **kwargs):
return conv2d_constructor(self, *args, padding_mode='circular', **kwargs)
torch.nn.Conv2d.__init__ = conv2d_constructor_circular
model_hijack = StableDiffusionModelHijack()
def register_buffer(self, name, attr):
"""
Fix register buffer bug for Mac OS.
"""
if type(attr) == torch.Tensor:
if attr.device != devices.device:
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
setattr(self, name, attr)
ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer
# import torch
# from torch.nn.functional import silu
# from types import MethodType
#
# from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet, patches
# from modules.hypernetworks import hypernetwork
# from modules.shared import cmd_opts
# from modules import sd_hijack_clip, sd_hijack_open_clip, sd_hijack_unet, sd_hijack_xlmr, xlmr, xlmr_m18
#
# import ldm.modules.attention
# import ldm.modules.diffusionmodules.model
# import ldm.modules.diffusionmodules.openaimodel
# import ldm.models.diffusion.ddpm
# import ldm.models.diffusion.ddim
# import ldm.models.diffusion.plms
# import ldm.modules.encoders.modules
#
# import sgm.modules.attention
# import sgm.modules.diffusionmodules.model
# import sgm.modules.diffusionmodules.openaimodel
# import sgm.modules.encoders.modules
#
# attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward
# diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity
# diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward
#
# # new memory efficient cross attention blocks do not support hypernets and we already
# # have memory efficient cross attention anyway, so this disables SD2.0's memory efficient cross attention
# ldm.modules.attention.MemoryEfficientCrossAttention = ldm.modules.attention.CrossAttention
# ldm.modules.attention.BasicTransformerBlock.ATTENTION_MODES["softmax-xformers"] = ldm.modules.attention.CrossAttention
#
# # silence new console spam from SD2
# ldm.modules.attention.print = shared.ldm_print
# ldm.modules.diffusionmodules.model.print = shared.ldm_print
# ldm.util.print = shared.ldm_print
# ldm.models.diffusion.ddpm.print = shared.ldm_print
#
# optimizers = []
# current_optimizer: sd_hijack_optimizations.SdOptimization = None
#
# ldm_patched_forward = sd_unet.create_unet_forward(ldm.modules.diffusionmodules.openaimodel.UNetModel.forward)
# ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", ldm_patched_forward)
#
# sgm_patched_forward = sd_unet.create_unet_forward(sgm.modules.diffusionmodules.openaimodel.UNetModel.forward)
# sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sgm_patched_forward)
#
#
# def list_optimizers():
# new_optimizers = script_callbacks.list_optimizers_callback()
#
# new_optimizers = [x for x in new_optimizers if x.is_available()]
#
# new_optimizers = sorted(new_optimizers, key=lambda x: x.priority, reverse=True)
#
# optimizers.clear()
# optimizers.extend(new_optimizers)
#
#
# def apply_optimizations(option=None):
# return
#
#
# def undo_optimizations():
# return
#
#
# def fix_checkpoint():
# """checkpoints are now added and removed in embedding/hypernet code, since torch doesn't want
# checkpoints to be added when not training (there's a warning)"""
#
# pass
#
#
# def weighted_loss(sd_model, pred, target, mean=True):
# #Calculate the weight normally, but ignore the mean
# loss = sd_model._old_get_loss(pred, target, mean=False)
#
# #Check if we have weights available
# weight = getattr(sd_model, '_custom_loss_weight', None)
# if weight is not None:
# loss *= weight
#
# #Return the loss, as mean if specified
# return loss.mean() if mean else loss
#
# def weighted_forward(sd_model, x, c, w, *args, **kwargs):
# try:
# #Temporarily append weights to a place accessible during loss calc
# sd_model._custom_loss_weight = w
#
# #Replace 'get_loss' with a weight-aware one. Otherwise we need to reimplement 'forward' completely
# #Keep 'get_loss', but don't overwrite the previous old_get_loss if it's already set
# if not hasattr(sd_model, '_old_get_loss'):
# sd_model._old_get_loss = sd_model.get_loss
# sd_model.get_loss = MethodType(weighted_loss, sd_model)
#
# #Run the standard forward function, but with the patched 'get_loss'
# return sd_model.forward(x, c, *args, **kwargs)
# finally:
# try:
# #Delete temporary weights if appended
# del sd_model._custom_loss_weight
# except AttributeError:
# pass
#
# #If we have an old loss function, reset the loss function to the original one
# if hasattr(sd_model, '_old_get_loss'):
# sd_model.get_loss = sd_model._old_get_loss
# del sd_model._old_get_loss
#
# def apply_weighted_forward(sd_model):
# #Add new function 'weighted_forward' that can be called to calc weighted loss
# sd_model.weighted_forward = MethodType(weighted_forward, sd_model)
#
# def undo_weighted_forward(sd_model):
# try:
# del sd_model.weighted_forward
# except AttributeError:
# pass
#
#
#
#
#
# class EmbeddingsWithFixes(torch.nn.Module):
# def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
# super().__init__()
# self.wrapped = wrapped
# self.embeddings = embeddings
# self.textual_inversion_key = textual_inversion_key
# self.weight = self.wrapped.weight
#
# def forward(self, input_ids):
# batch_fixes = self.embeddings.fixes
# self.embeddings.fixes = None
#
# inputs_embeds = self.wrapped(input_ids)
#
# if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0:
# return inputs_embeds
#
# vecs = []
# for fixes, tensor in zip(batch_fixes, inputs_embeds):
# for offset, embedding in fixes:
# vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
# emb = devices.cond_cast_unet(vec)
# emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
# tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]]).to(dtype=inputs_embeds.dtype)
#
# vecs.append(tensor)
#
# return torch.stack(vecs)
#
#
# class TextualInversionEmbeddings(torch.nn.Embedding):
# def __init__(self, num_embeddings: int, embedding_dim: int, textual_inversion_key='clip_l', **kwargs):
# super().__init__(num_embeddings, embedding_dim, **kwargs)
#
# self.embeddings = model_hijack
# self.textual_inversion_key = textual_inversion_key
#
# @property
# def wrapped(self):
# return super().forward
#
# def forward(self, input_ids):
# return EmbeddingsWithFixes.forward(self, input_ids)
#
#
# def add_circular_option_to_conv_2d():
# conv2d_constructor = torch.nn.Conv2d.__init__
#
# def conv2d_constructor_circular(self, *args, **kwargs):
# return conv2d_constructor(self, *args, padding_mode='circular', **kwargs)
#
# torch.nn.Conv2d.__init__ = conv2d_constructor_circular
#
#
# model_hijack = StableDiffusionModelHijack()
#
#
# def register_buffer(self, name, attr):
# """
# Fix register buffer bug for Mac OS.
# """
#
# if type(attr) == torch.Tensor:
# if attr.device != devices.device:
# attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
#
# setattr(self, name, attr)
#
#
# ldm.models.diffusion.ddim.DDIMSampler.register_buffer = register_buffer
# ldm.models.diffusion.plms.PLMSSampler.register_buffer = register_buffer

File diff suppressed because it is too large Load Diff

View File

@@ -1,154 +1,154 @@
import torch
from packaging import version
from einops import repeat
import math
from modules import devices
from modules.sd_hijack_utils import CondFunc
class TorchHijackForUnet:
"""
This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
"""
def __getattr__(self, item):
if item == 'cat':
return self.cat
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
def cat(self, tensors, *args, **kwargs):
if len(tensors) == 2:
a, b = tensors
if a.shape[-2:] != b.shape[-2:]:
a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
tensors = (a, b)
return torch.cat(tensors, *args, **kwargs)
th = TorchHijackForUnet()
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
"""Always make sure inputs to unet are in correct dtype."""
if isinstance(cond, dict):
for y in cond.keys():
if isinstance(cond[y], list):
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
else:
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
with devices.autocast():
result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
if devices.unet_needs_upcast:
return result.float()
else:
return result
# Monkey patch to create timestep embed tensor on device, avoiding a block.
def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
if not repeat_only:
half = dim // 2
freqs = torch.exp(
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
else:
embedding = repeat(timesteps, 'b -> b d', d=dim)
return embedding
# Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
# Prevents a lot of unnecessary aten::copy_ calls
def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
# note: if no context is given, cross-attention defaults to self-attention
if not isinstance(context, list):
context = [context]
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context[i])
if self.use_linear:
x = self.proj_out(x)
x = x.view(b, h, w, c).permute(0, 3, 1, 2)
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class GELUHijack(torch.nn.GELU, torch.nn.Module):
def __init__(self, *args, **kwargs):
torch.nn.GELU.__init__(self, *args, **kwargs)
def forward(self, x):
if devices.unet_needs_upcast:
return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
else:
return torch.nn.GELU.forward(self, x)
ddpm_edit_hijack = None
def hijack_ddpm_edit():
global ddpm_edit_hijack
if not ddpm_edit_hijack:
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
dtype = torch.float32
else:
dtype = devices.dtype_unet
return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
# import torch
# from packaging import version
# from einops import repeat
# import math
#
# from modules import devices
# from modules.sd_hijack_utils import CondFunc
#
#
# class TorchHijackForUnet:
# """
# This is torch, but with cat that resizes tensors to appropriate dimensions if they do not match;
# this makes it possible to create pictures with dimensions that are multiples of 8 rather than 64
# """
#
# def __getattr__(self, item):
# if item == 'cat':
# return self.cat
#
# if hasattr(torch, item):
# return getattr(torch, item)
#
# raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'")
#
# def cat(self, tensors, *args, **kwargs):
# if len(tensors) == 2:
# a, b = tensors
# if a.shape[-2:] != b.shape[-2:]:
# a = torch.nn.functional.interpolate(a, b.shape[-2:], mode="nearest")
#
# tensors = (a, b)
#
# return torch.cat(tensors, *args, **kwargs)
#
#
# th = TorchHijackForUnet()
#
#
# # Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
# def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
# """Always make sure inputs to unet are in correct dtype."""
# if isinstance(cond, dict):
# for y in cond.keys():
# if isinstance(cond[y], list):
# cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
# else:
# cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
#
# with devices.autocast():
# result = orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs)
# if devices.unet_needs_upcast:
# return result.float()
# else:
# return result
#
#
# # Monkey patch to create timestep embed tensor on device, avoiding a block.
# def timestep_embedding(_, timesteps, dim, max_period=10000, repeat_only=False):
# """
# Create sinusoidal timestep embeddings.
# :param timesteps: a 1-D Tensor of N indices, one per batch element.
# These may be fractional.
# :param dim: the dimension of the output.
# :param max_period: controls the minimum frequency of the embeddings.
# :return: an [N x dim] Tensor of positional embeddings.
# """
# if not repeat_only:
# half = dim // 2
# freqs = torch.exp(
# -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=timesteps.device) / half
# )
# args = timesteps[:, None].float() * freqs[None]
# embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
# if dim % 2:
# embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
# else:
# embedding = repeat(timesteps, 'b -> b d', d=dim)
# return embedding
#
#
# # Monkey patch to SpatialTransformer removing unnecessary contiguous calls.
# # Prevents a lot of unnecessary aten::copy_ calls
# def spatial_transformer_forward(_, self, x: torch.Tensor, context=None):
# # note: if no context is given, cross-attention defaults to self-attention
# if not isinstance(context, list):
# context = [context]
# b, c, h, w = x.shape
# x_in = x
# x = self.norm(x)
# if not self.use_linear:
# x = self.proj_in(x)
# x = x.permute(0, 2, 3, 1).reshape(b, h * w, c)
# if self.use_linear:
# x = self.proj_in(x)
# for i, block in enumerate(self.transformer_blocks):
# x = block(x, context=context[i])
# if self.use_linear:
# x = self.proj_out(x)
# x = x.view(b, h, w, c).permute(0, 3, 1, 2)
# if not self.use_linear:
# x = self.proj_out(x)
# return x + x_in
#
#
# class GELUHijack(torch.nn.GELU, torch.nn.Module):
# def __init__(self, *args, **kwargs):
# torch.nn.GELU.__init__(self, *args, **kwargs)
# def forward(self, x):
# if devices.unet_needs_upcast:
# return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
# else:
# return torch.nn.GELU.forward(self, x)
#
#
# ddpm_edit_hijack = None
# def hijack_ddpm_edit():
# global ddpm_edit_hijack
# if not ddpm_edit_hijack:
# CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
# ddpm_edit_hijack = CondFunc('modules.models.diffusion.ddpm_edit.LatentDiffusion.apply_model', apply_model)
#
#
# unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding)
# CondFunc('ldm.modules.attention.SpatialTransformer.forward', spatial_transformer_forward)
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
#
# if version.parse(torch.__version__) <= version.parse("1.13.2") or torch.cuda.is_available():
# CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
# CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
# CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
#
# first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
# first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
#
# CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model)
# CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model)
#
#
# def timestep_embedding_cast_result(orig_func, timesteps, *args, **kwargs):
# if devices.unet_needs_upcast and timesteps.dtype == torch.int64:
# dtype = torch.float32
# else:
# dtype = devices.dtype_unet
# return orig_func(timesteps, *args, **kwargs).to(dtype=dtype)
#
#
# CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)
# CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', timestep_embedding_cast_result)

View File

@@ -1,137 +1,137 @@
import os
import torch
from modules import shared, paths, sd_disable_initialization, devices
sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
config_default = shared.sd_default_config
# config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
config_alt_diffusion_m18 = os.path.join(sd_configs_path, "alt-diffusion-m18-inference.yaml")
config_sd3 = os.path.join(sd_configs_path, "sd3-inference.yaml")
def is_using_v_parameterization_for_sd2(state_dict):
"""
Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
"""
import ldm.modules.diffusionmodules.openaimodel
device = devices.device
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
use_checkpoint=False,
use_fp16=False,
image_size=32,
in_channels=4,
out_channels=4,
model_channels=320,
attention_resolutions=[4, 2, 1],
num_res_blocks=2,
channel_mult=[1, 2, 4, 4],
num_head_channels=64,
use_spatial_transformer=True,
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=1024,
legacy=False
)
unet.eval()
with torch.no_grad():
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
unet.load_state_dict(unet_sd, strict=True)
unet.to(device=device, dtype=devices.dtype_unet)
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
with devices.autocast():
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().cpu().item()
return out < -1
def guess_model_config_from_state_dict(sd, filename):
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
if "model.diffusion_model.x_embedder.proj.weight" in sd:
return config_sd3
if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
if diffusion_model_input.shape[1] == 9:
return config_sdxl_inpainting
else:
return config_sdxl
if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
return config_sdxl_refiner
elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
return config_unclip
elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
return config_unopenclip
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9:
return config_sd2_inpainting
# elif is_using_v_parameterization_for_sd2(sd):
# return config_sd2v
else:
return config_sd2v
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
return config_inpainting
if diffusion_model_input.shape[1] == 8:
return config_instruct_pix2pix
if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
return config_alt_diffusion_m18
return config_alt_diffusion
return config_default
def find_checkpoint_config(state_dict, info):
if info is None:
return guess_model_config_from_state_dict(state_dict, "")
config = find_checkpoint_config_near_filename(info)
if config is not None:
return config
return guess_model_config_from_state_dict(state_dict, info.filename)
def find_checkpoint_config_near_filename(info):
if info is None:
return None
config = f"{os.path.splitext(info.filename)[0]}.yaml"
if os.path.exists(config):
return config
return None
# import os
#
# import torch
#
# from modules import shared, paths, sd_disable_initialization, devices
#
# sd_configs_path = shared.sd_configs_path
# sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
# sd_xl_repo_configs_path = os.path.join(paths.paths['Stable Diffusion XL'], "configs", "inference")
#
#
# config_default = shared.sd_default_config
# # config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
# config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
# config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
# config_sdxl = os.path.join(sd_xl_repo_configs_path, "sd_xl_base.yaml")
# config_sdxl_refiner = os.path.join(sd_xl_repo_configs_path, "sd_xl_refiner.yaml")
# config_sdxl_inpainting = os.path.join(sd_configs_path, "sd_xl_inpaint.yaml")
# config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
# config_unclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-l-inference.yaml")
# config_unopenclip = os.path.join(sd_repo_configs_path, "v2-1-stable-unclip-h-inference.yaml")
# config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
# config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
# config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
# config_alt_diffusion_m18 = os.path.join(sd_configs_path, "alt-diffusion-m18-inference.yaml")
# config_sd3 = os.path.join(sd_configs_path, "sd3-inference.yaml")
#
#
# def is_using_v_parameterization_for_sd2(state_dict):
# """
# Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
# """
#
# import ldm.modules.diffusionmodules.openaimodel
#
# device = devices.device
#
# with sd_disable_initialization.DisableInitialization():
# unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
# use_checkpoint=False,
# use_fp16=False,
# image_size=32,
# in_channels=4,
# out_channels=4,
# model_channels=320,
# attention_resolutions=[4, 2, 1],
# num_res_blocks=2,
# channel_mult=[1, 2, 4, 4],
# num_head_channels=64,
# use_spatial_transformer=True,
# use_linear_in_transformer=True,
# transformer_depth=1,
# context_dim=1024,
# legacy=False
# )
# unet.eval()
#
# with torch.no_grad():
# unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
# unet.load_state_dict(unet_sd, strict=True)
# unet.to(device=device, dtype=devices.dtype_unet)
#
# test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
# x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
#
# with devices.autocast():
# out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().cpu().item()
#
# return out < -1
#
#
# def guess_model_config_from_state_dict(sd, filename):
# sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
# diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
# sd2_variations_weight = sd.get('embedder.model.ln_final.weight', None)
#
# if "model.diffusion_model.x_embedder.proj.weight" in sd:
# return config_sd3
#
# if sd.get('conditioner.embedders.1.model.ln_final.weight', None) is not None:
# if diffusion_model_input.shape[1] == 9:
# return config_sdxl_inpainting
# else:
# return config_sdxl
#
# if sd.get('conditioner.embedders.0.model.ln_final.weight', None) is not None:
# return config_sdxl_refiner
# elif sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
# return config_depth_model
# elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 768:
# return config_unclip
# elif sd2_variations_weight is not None and sd2_variations_weight.shape[0] == 1024:
# return config_unopenclip
#
# if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
# if diffusion_model_input.shape[1] == 9:
# return config_sd2_inpainting
# # elif is_using_v_parameterization_for_sd2(sd):
# # return config_sd2v
# else:
# return config_sd2v
#
# if diffusion_model_input is not None:
# if diffusion_model_input.shape[1] == 9:
# return config_inpainting
# if diffusion_model_input.shape[1] == 8:
# return config_instruct_pix2pix
#
# if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
# if sd.get('cond_stage_model.transformation.weight').size()[0] == 1024:
# return config_alt_diffusion_m18
# return config_alt_diffusion
#
# return config_default
#
#
# def find_checkpoint_config(state_dict, info):
# if info is None:
# return guess_model_config_from_state_dict(state_dict, "")
#
# config = find_checkpoint_config_near_filename(info)
# if config is not None:
# return config
#
# return guess_model_config_from_state_dict(state_dict, info.filename)
#
#
# def find_checkpoint_config_near_filename(info):
# if info is None:
# return None
#
# config = f"{os.path.splitext(info.filename)[0]}.yaml"
# if os.path.exists(config):
# return config
#
# return None
#

View File

@@ -1,115 +1,115 @@
from __future__ import annotations
import torch
import sgm.models.diffusion
import sgm.modules.diffusionmodules.denoiser_scaling
import sgm.modules.diffusionmodules.discretizer
from modules import devices, shared, prompt_parser
from modules import torch_utils
from backend import memory_management
def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
for embedder in self.conditioner.embedders:
embedder.ucg_rate = 0.0
width = getattr(batch, 'width', 1024) or 1024
height = getattr(batch, 'height', 1024) or 1024
is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
devices_args = dict(device=self.forge_objects.clip.patcher.current_device, dtype=memory_management.text_encoder_dtype())
sdxl_conds = {
"txt": batch,
"original_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
"crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left], **devices_args).repeat(len(batch), 1),
"target_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
"aesthetic_score": torch.tensor([aesthetic_score], **devices_args).repeat(len(batch), 1),
}
force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in batch)
c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
return c
def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond, *args, **kwargs):
if self.model.diffusion_model.in_channels == 9:
x = torch.cat([x] + cond['c_concat'], dim=1)
return self.model(x, t, cond, *args, **kwargs)
def get_first_stage_encoding(self, x): # SDXL's encode_first_stage does everything so get_first_stage_encoding is just there for compatibility
return x
sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
sgm.models.diffusion.DiffusionEngine.get_first_stage_encoding = get_first_stage_encoding
def encode_embedding_init_text(self: sgm.modules.GeneralConditioner, init_text, nvpt):
res = []
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'encode_embedding_init_text')]:
encoded = embedder.encode_embedding_init_text(init_text, nvpt)
res.append(encoded)
return torch.cat(res, dim=1)
def tokenize(self: sgm.modules.GeneralConditioner, texts):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'tokenize')]:
return embedder.tokenize(texts)
raise AssertionError('no tokenizer available')
def process_texts(self, texts):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'process_texts')]:
return embedder.process_texts(texts)
def get_target_prompt_token_count(self, token_count):
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'get_target_prompt_token_count')]:
return embedder.get_target_prompt_token_count(token_count)
# those additions to GeneralConditioner make it possible to use it as model.cond_stage_model from SD1.5 in exist
sgm.modules.GeneralConditioner.encode_embedding_init_text = encode_embedding_init_text
sgm.modules.GeneralConditioner.tokenize = tokenize
sgm.modules.GeneralConditioner.process_texts = process_texts
sgm.modules.GeneralConditioner.get_target_prompt_token_count = get_target_prompt_token_count
def extend_sdxl(model):
"""this adds a bunch of parameters to make SDXL model look a bit more like SD1.5 to the rest of the codebase."""
dtype = torch_utils.get_param(model.model.diffusion_model).dtype
model.model.diffusion_model.dtype = dtype
model.model.conditioning_key = 'crossattn'
model.cond_stage_key = 'txt'
# model.cond_stage_model will be set in sd_hijack
model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=torch.float32)
model.conditioner.wrapped = torch.nn.Module()
sgm.modules.attention.print = shared.ldm_print
sgm.modules.diffusionmodules.model.print = shared.ldm_print
sgm.modules.diffusionmodules.openaimodel.print = shared.ldm_print
sgm.modules.encoders.modules.print = shared.ldm_print
# this gets the code to load the vanilla attention that we override
sgm.modules.attention.SDP_IS_AVAILABLE = True
sgm.modules.attention.XFORMERS_IS_AVAILABLE = False
# from __future__ import annotations
#
# import torch
#
# import sgm.models.diffusion
# import sgm.modules.diffusionmodules.denoiser_scaling
# import sgm.modules.diffusionmodules.discretizer
# from modules import devices, shared, prompt_parser
# from modules import torch_utils
#
# from backend import memory_management
#
#
# def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch: prompt_parser.SdConditioning | list[str]):
#
# for embedder in self.conditioner.embedders:
# embedder.ucg_rate = 0.0
#
# width = getattr(batch, 'width', 1024) or 1024
# height = getattr(batch, 'height', 1024) or 1024
# is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
# aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
#
# devices_args = dict(device=self.forge_objects.clip.patcher.current_device, dtype=memory_management.text_encoder_dtype())
#
# sdxl_conds = {
# "txt": batch,
# "original_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
# "crop_coords_top_left": torch.tensor([shared.opts.sdxl_crop_top, shared.opts.sdxl_crop_left], **devices_args).repeat(len(batch), 1),
# "target_size_as_tuple": torch.tensor([height, width], **devices_args).repeat(len(batch), 1),
# "aesthetic_score": torch.tensor([aesthetic_score], **devices_args).repeat(len(batch), 1),
# }
#
# force_zero_negative_prompt = is_negative_prompt and all(x == '' for x in batch)
# c = self.conditioner(sdxl_conds, force_zero_embeddings=['txt'] if force_zero_negative_prompt else [])
#
# return c
#
#
# def apply_model(self: sgm.models.diffusion.DiffusionEngine, x, t, cond, *args, **kwargs):
# if self.model.diffusion_model.in_channels == 9:
# x = torch.cat([x] + cond['c_concat'], dim=1)
#
# return self.model(x, t, cond, *args, **kwargs)
#
#
# def get_first_stage_encoding(self, x): # SDXL's encode_first_stage does everything so get_first_stage_encoding is just there for compatibility
# return x
#
#
# sgm.models.diffusion.DiffusionEngine.get_learned_conditioning = get_learned_conditioning
# sgm.models.diffusion.DiffusionEngine.apply_model = apply_model
# sgm.models.diffusion.DiffusionEngine.get_first_stage_encoding = get_first_stage_encoding
#
#
# def encode_embedding_init_text(self: sgm.modules.GeneralConditioner, init_text, nvpt):
# res = []
#
# for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'encode_embedding_init_text')]:
# encoded = embedder.encode_embedding_init_text(init_text, nvpt)
# res.append(encoded)
#
# return torch.cat(res, dim=1)
#
#
# def tokenize(self: sgm.modules.GeneralConditioner, texts):
# for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'tokenize')]:
# return embedder.tokenize(texts)
#
# raise AssertionError('no tokenizer available')
#
#
#
# def process_texts(self, texts):
# for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'process_texts')]:
# return embedder.process_texts(texts)
#
#
# def get_target_prompt_token_count(self, token_count):
# for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'get_target_prompt_token_count')]:
# return embedder.get_target_prompt_token_count(token_count)
#
#
# # those additions to GeneralConditioner make it possible to use it as model.cond_stage_model from SD1.5 in exist
# sgm.modules.GeneralConditioner.encode_embedding_init_text = encode_embedding_init_text
# sgm.modules.GeneralConditioner.tokenize = tokenize
# sgm.modules.GeneralConditioner.process_texts = process_texts
# sgm.modules.GeneralConditioner.get_target_prompt_token_count = get_target_prompt_token_count
#
#
# def extend_sdxl(model):
# """this adds a bunch of parameters to make SDXL model look a bit more like SD1.5 to the rest of the codebase."""
#
# dtype = torch_utils.get_param(model.model.diffusion_model).dtype
# model.model.diffusion_model.dtype = dtype
# model.model.conditioning_key = 'crossattn'
# model.cond_stage_key = 'txt'
# # model.cond_stage_model will be set in sd_hijack
#
# model.parameterization = "v" if isinstance(model.denoiser.scaling, sgm.modules.diffusionmodules.denoiser_scaling.VScaling) else "eps"
#
# discretization = sgm.modules.diffusionmodules.discretizer.LegacyDDPMDiscretization()
# model.alphas_cumprod = torch.asarray(discretization.alphas_cumprod, device=devices.device, dtype=torch.float32)
#
# model.conditioner.wrapped = torch.nn.Module()
#
#
# sgm.modules.attention.print = shared.ldm_print
# sgm.modules.diffusionmodules.model.print = shared.ldm_print
# sgm.modules.diffusionmodules.openaimodel.print = shared.ldm_print
# sgm.modules.encoders.modules.print = shared.ldm_print
#
# # this gets the code to load the vanilla attention that we override
# sgm.modules.attention.SDP_IS_AVAILABLE = True
# sgm.modules.attention.XFORMERS_IS_AVAILABLE = False

View File

@@ -35,9 +35,7 @@ def refresh_vae_list():
def cross_attention_optimizations():
import modules.sd_hijack
return ["Automatic"] + [x.title() for x in modules.sd_hijack.optimizers] + ["None"]
return ["Automatic"]
def sd_unet_items():