mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-19 22:34:00 +00:00
i
This commit is contained in:
16
README.md
16
README.md
@@ -447,8 +447,8 @@ class ControlNetExampleForge(scripts.Script):
|
||||
|
||||
unet = p.sd_model.forge_objects.unet
|
||||
|
||||
# Unet has input, middle, output blocks, and we can give different
|
||||
# weights to each layers in all blocks.
|
||||
# Unet has input, middle, output blocks, and we can give different weights
|
||||
# to each layers in all blocks.
|
||||
# Below is an example for stronger control in middle block.
|
||||
# This is helpful for some high-res fix passes. (p.is_hr_pass)
|
||||
positive_advanced_weighting = {
|
||||
@@ -465,10 +465,17 @@ class ControlNetExampleForge(scripts.Script):
|
||||
# The advanced_frame_weighting is a weight applied to each image in a batch.
|
||||
# The length of this list must be same with batch size
|
||||
# For example, if batch size is 5, the below list is [0, 0.25, 0.5, 0.75, 1.0]
|
||||
# If you view the 5 images as 5 frames in a video, this will lead to
|
||||
# If you view the 5 images as 5 frames in a video, this will lead to
|
||||
# progressively stronger control over time.
|
||||
advanced_frame_weighting = [float(i) / float(batch_size - 1) for i in range(batch_size)]
|
||||
|
||||
# The advanced_sigma_weighting allows you to dynamically compute control
|
||||
# weights given diffusion timestep (sigma).
|
||||
# For example below code can softly make beginning steps stronger than ending steps.
|
||||
sigma_max = unet.model.model_sampling.percent_to_sigma(0.0)
|
||||
sigma_min = unet.model.model_sampling.percent_to_sigma(1.0)
|
||||
advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
|
||||
|
||||
# But in this simple example we do not use them
|
||||
positive_advanced_weighting = None
|
||||
negative_advanced_weighting = None
|
||||
@@ -478,7 +485,8 @@ class ControlNetExampleForge(scripts.Script):
|
||||
strength=0.6, start_percent=0.0, end_percent=0.8,
|
||||
positive_advanced_weighting=positive_advanced_weighting,
|
||||
negative_advanced_weighting=negative_advanced_weighting,
|
||||
advanced_frame_weighting=advanced_frame_weighting)
|
||||
advanced_frame_weighting=advanced_frame_weighting,
|
||||
advanced_sigma_weighting=advanced_sigma_weighting)
|
||||
|
||||
p.sd_model.forge_objects.unet = unet
|
||||
|
||||
|
||||
@@ -99,7 +99,8 @@ class ControlNetExampleForge(scripts.Script):
|
||||
|
||||
unet = p.sd_model.forge_objects.unet
|
||||
|
||||
# Unet has input, middle, output blocks, and we can give different weights to each layers in all blocks.
|
||||
# Unet has input, middle, output blocks, and we can give different weights
|
||||
# to each layers in all blocks.
|
||||
# Below is an example for stronger control in middle block.
|
||||
# This is helpful for some high-res fix passes. (p.is_hr_pass)
|
||||
positive_advanced_weighting = {
|
||||
@@ -116,9 +117,17 @@ class ControlNetExampleForge(scripts.Script):
|
||||
# The advanced_frame_weighting is a weight applied to each image in a batch.
|
||||
# The length of this list must be same with batch size
|
||||
# For example, if batch size is 5, the below list is [0, 0.25, 0.5, 0.75, 1.0]
|
||||
# If you view the 5 images as 5 frames in a video, this will lead to progressively stronger control over time.
|
||||
# If you view the 5 images as 5 frames in a video, this will lead to
|
||||
# progressively stronger control over time.
|
||||
advanced_frame_weighting = [float(i) / float(batch_size - 1) for i in range(batch_size)]
|
||||
|
||||
# The advanced_sigma_weighting allows you to dynamically compute control
|
||||
# weights given diffusion timestep (sigma).
|
||||
# For example below code can softly make beginning steps stronger than ending steps.
|
||||
sigma_max = unet.model.model_sampling.percent_to_sigma(0.0)
|
||||
sigma_min = unet.model.model_sampling.percent_to_sigma(1.0)
|
||||
advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
|
||||
|
||||
# But in this simple example we do not use them
|
||||
positive_advanced_weighting = None
|
||||
negative_advanced_weighting = None
|
||||
@@ -128,7 +137,8 @@ class ControlNetExampleForge(scripts.Script):
|
||||
strength=0.6, start_percent=0.0, end_percent=0.8,
|
||||
positive_advanced_weighting=positive_advanced_weighting,
|
||||
negative_advanced_weighting=negative_advanced_weighting,
|
||||
advanced_frame_weighting=advanced_frame_weighting)
|
||||
advanced_frame_weighting=advanced_frame_weighting,
|
||||
advanced_sigma_weighting=advanced_sigma_weighting)
|
||||
|
||||
p.sd_model.forge_objects.unet = unet
|
||||
|
||||
|
||||
@@ -8,6 +8,7 @@ def apply_controlnet_advanced(
|
||||
positive_advanced_weighting=None,
|
||||
negative_advanced_weighting=None,
|
||||
advanced_frame_weighting=None,
|
||||
advanced_sigma_weighting=None
|
||||
):
|
||||
"""
|
||||
|
||||
@@ -35,12 +36,23 @@ def apply_controlnet_advanced(
|
||||
For example, if batch size is 5, you can use advanced_frame_weighting = [0, 0.25, 0.5, 0.75, 1.0]
|
||||
If you view the 5 images as 5 frames in a video, this will lead to progressively stronger control over time.
|
||||
|
||||
# advanced_sigma_weighting
|
||||
|
||||
The advanced_sigma_weighting allows you to dynamically compute control
|
||||
weights given diffusion timestep (sigma).
|
||||
For example below code can softly make beginning steps stronger than ending steps.
|
||||
|
||||
sigma_max = unet.model.model_sampling.percent_to_sigma(0.0)
|
||||
sigma_min = unet.model.model_sampling.percent_to_sigma(1.0)
|
||||
advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
|
||||
|
||||
"""
|
||||
|
||||
cnet = controlnet.copy().set_cond_hint(image_bhwc.movedim(-1, 1), strength, (start_percent, end_percent))
|
||||
cnet.positive_advanced_weighting = positive_advanced_weighting
|
||||
cnet.negative_advanced_weighting = negative_advanced_weighting
|
||||
cnet.advanced_frame_weighting = advanced_frame_weighting
|
||||
cnet.advanced_sigma_weighting = advanced_sigma_weighting
|
||||
|
||||
m = unet.clone()
|
||||
m.add_patched_controlnet(cnet)
|
||||
|
||||
Reference in New Issue
Block a user