mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-22 07:43:58 +00:00
implement operations from scratch
This commit is contained in:
171
backend/operations.py
Normal file
171
backend/operations.py
Normal file
@@ -0,0 +1,171 @@
|
||||
import torch
|
||||
import contextlib
|
||||
|
||||
from modules_forge import stream
|
||||
|
||||
|
||||
stash = {}
|
||||
|
||||
|
||||
def weights_manual_cast(layer, x):
|
||||
weight, bias, signal = None, None, None
|
||||
non_blocking = True
|
||||
|
||||
if getattr(x.device, 'type', None) == 'mps':
|
||||
non_blocking = False
|
||||
|
||||
if stream.using_stream:
|
||||
with stream.stream_context()(stream.mover_stream):
|
||||
if layer.bias is not None:
|
||||
bias = layer.bias.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
|
||||
weight = layer.weight.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
|
||||
signal = stream.mover_stream.record_event()
|
||||
else:
|
||||
if layer.bias is not None:
|
||||
bias = layer.bias.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
|
||||
weight = layer.weight.to(device=x.device, dtype=x.dtype, non_blocking=non_blocking)
|
||||
|
||||
return weight, bias, signal
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def main_stream_worker(weight, bias, signal):
|
||||
if not stream.using_stream or signal is None:
|
||||
yield
|
||||
return
|
||||
|
||||
with stream.stream_context()(stream.current_stream):
|
||||
stream.current_stream.wait_event(signal)
|
||||
yield
|
||||
finished_signal = stream.current_stream.record_event()
|
||||
stash[id(finished_signal)] = (weight, bias, finished_signal)
|
||||
|
||||
garbage = []
|
||||
for k, (w, b, s) in stash.items():
|
||||
if s.query():
|
||||
garbage.append(k)
|
||||
|
||||
for k in garbage:
|
||||
del stash[k]
|
||||
return
|
||||
|
||||
|
||||
def cleanup_cache():
|
||||
if not stream.using_stream:
|
||||
return
|
||||
|
||||
stream.current_stream.synchronize()
|
||||
stream.mover_stream.synchronize()
|
||||
stash.clear()
|
||||
return
|
||||
|
||||
|
||||
class ForgeOperations:
|
||||
class Linear(torch.nn.Linear):
|
||||
parameters_manual_cast = False
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward(self, x):
|
||||
if self.parameters_manual_cast:
|
||||
weight, bias, signal = weights_manual_cast(self, x)
|
||||
with main_stream_worker(weight, bias, signal):
|
||||
return torch.nn.functional.linear(x, weight, bias)
|
||||
else:
|
||||
return super().forward(x)
|
||||
|
||||
class Conv2d(torch.nn.Conv2d):
|
||||
parameters_manual_cast = False
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward(self, x):
|
||||
if self.parameters_manual_cast:
|
||||
weight, bias, signal = weights_manual_cast(self, x)
|
||||
with main_stream_worker(weight, bias, signal):
|
||||
return self._conv_forward(x, weight, bias)
|
||||
else:
|
||||
return super().forward(x)
|
||||
|
||||
class Conv3d(torch.nn.Conv3d):
|
||||
parameters_manual_cast = False
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward(self, x):
|
||||
if self.parameters_manual_cast:
|
||||
weight, bias, signal = weights_manual_cast(self, x)
|
||||
with main_stream_worker(weight, bias, signal):
|
||||
return self._conv_forward(x, weight, bias)
|
||||
else:
|
||||
return super().forward(x)
|
||||
|
||||
class GroupNorm(torch.nn.GroupNorm):
|
||||
parameters_manual_cast = False
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward(self, x):
|
||||
if self.parameters_manual_cast:
|
||||
weight, bias, signal = weights_manual_cast(self, x)
|
||||
with main_stream_worker(weight, bias, signal):
|
||||
return torch.nn.functional.group_norm(x, self.num_groups, weight, bias, self.eps)
|
||||
else:
|
||||
return super().forward(x)
|
||||
|
||||
class LayerNorm(torch.nn.LayerNorm):
|
||||
parameters_manual_cast = False
|
||||
|
||||
def reset_parameters(self):
|
||||
return None
|
||||
|
||||
def forward(self, x):
|
||||
if self.parameters_manual_cast:
|
||||
weight, bias, signal = weights_manual_cast(self, x)
|
||||
with main_stream_worker(weight, bias, signal):
|
||||
return torch.nn.functional.layer_norm(x, self.normalized_shape, weight, bias, self.eps)
|
||||
else:
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class ForgeOperationsWithManualCast(ForgeOperations):
|
||||
class Linear(ForgeOperations.Linear):
|
||||
parameters_manual_cast = True
|
||||
|
||||
class Conv2d(ForgeOperations.Conv2d):
|
||||
parameters_manual_cast = True
|
||||
|
||||
class Conv3d(ForgeOperations.Conv3d):
|
||||
parameters_manual_cast = True
|
||||
|
||||
class GroupNorm(ForgeOperations.GroupNorm):
|
||||
parameters_manual_cast = True
|
||||
|
||||
class LayerNorm(ForgeOperations.LayerNorm):
|
||||
parameters_manual_cast = True
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def using_forge_operations(parameters_manual_cast=False):
|
||||
operations = ForgeOperations
|
||||
|
||||
if parameters_manual_cast:
|
||||
operations = ForgeOperationsWithManualCast
|
||||
|
||||
op_names = ['Linear', 'Conv2d', 'Conv3d', 'GroupNorm', 'LayerNorm']
|
||||
backups = {op_name: getattr(torch.nn, op_name) for op_name in op_names}
|
||||
|
||||
try:
|
||||
for op_name in op_names:
|
||||
setattr(torch.nn, op_name, getattr(operations, op_name))
|
||||
|
||||
yield
|
||||
|
||||
finally:
|
||||
for op_name in op_names:
|
||||
setattr(torch.nn, op_name, backups[op_name])
|
||||
return
|
||||
Reference in New Issue
Block a user