Fix Zero Terminal SNR option

This commit is contained in:
catboxanon
2024-10-19 12:28:14 -04:00
parent 534405e597
commit aba35cde5f
2 changed files with 33 additions and 11 deletions

View File

@@ -45,6 +45,26 @@ def flux_time_shift(mu, sigma, t):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def rescale_zero_terminal_snr_sigmas(sigmas):
alphas_cumprod = 1 / ((sigmas * sigmas) + 1)
alphas_bar_sqrt = alphas_cumprod.sqrt()
# Store old values.
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
# Shift so the last timestep is zero.
alphas_bar_sqrt -= (alphas_bar_sqrt_T)
# Scale so the first timestep is back to the old value.
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
# Convert alphas_bar_sqrt to betas
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
alphas_bar[-1] = 4.8973451890853435e-08
return ((1 - alphas_bar) / alphas_bar) ** 0.5
class AbstractPrediction(torch.nn.Module):
def __init__(self, sigma_data=1.0, prediction_type='epsilon'):
super().__init__()
@@ -114,6 +134,10 @@ class Prediction(AbstractPrediction):
self.register_buffer('log_sigmas', sigmas.log().float())
return
def set_sigmas(self, sigmas):
self.register_buffer('sigmas', sigmas.float())
self.register_buffer('log_sigmas', sigmas.log().float())
@property
def sigma_min(self):
return self.sigmas[0]

View File

@@ -35,6 +35,7 @@ from modules.sd_models import apply_token_merging, forge_model_reload
from modules_forge.utils import apply_circular_forge
from modules_forge import main_entry
from backend import memory_management
from backend.modules.k_prediction import rescale_zero_terminal_snr_sigmas
# some of those options should not be changed at all because they would break the model, so I removed them from options.
@@ -969,25 +970,22 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
# TODO: This currently seems broken. It should be fixed or removed.
sd_models.apply_alpha_schedule_override(p.sd_model, p)
alphas_cumprod_modifiers = p.sd_model.forge_objects.unet.model_options.get('alphas_cumprod_modifiers', [])
alphas_cumprod_backup = None
if len(alphas_cumprod_modifiers) > 0:
alphas_cumprod_backup = p.sd_model.alphas_cumprod
for modifier in alphas_cumprod_modifiers:
p.sd_model.alphas_cumprod = modifier(p.sd_model.alphas_cumprod)
p.sd_model.forge_objects.unet.model.model_sampling.set_sigmas(((1 - p.sd_model.alphas_cumprod) / p.sd_model.alphas_cumprod) ** 0.5)
sigmas_backup = None
if opts.sd_noise_schedule == "Zero Terminal SNR" and p is not None:
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
sigmas_backup = p.sd_model.forge_objects.unet.model.predictor.sigmas
p.sd_model.forge_objects.unet.model.predictor.set_sigmas(rescale_zero_terminal_snr_sigmas(p.sd_model.forge_objects.unet.model.predictor.sigmas))
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
for x_sample in samples_ddim:
p.latents_after_sampling.append(x_sample)
if alphas_cumprod_backup is not None:
p.sd_model.alphas_cumprod = alphas_cumprod_backup
p.sd_model.forge_objects.unet.model.model_sampling.set_sigmas(((1 - p.sd_model.alphas_cumprod) / p.sd_model.alphas_cumprod) ** 0.5)
if sigmas_backup is not None:
p.sd_model.forge_objects.unet.model.predictor.set_sigmas(sigmas_backup)
if p.scripts is not None:
ps = scripts.PostSampleArgs(samples_ddim)