mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-10 18:09:58 +00:00
Fix Zero Terminal SNR option
This commit is contained in:
@@ -35,6 +35,7 @@ from modules.sd_models import apply_token_merging, forge_model_reload
|
||||
from modules_forge.utils import apply_circular_forge
|
||||
from modules_forge import main_entry
|
||||
from backend import memory_management
|
||||
from backend.modules.k_prediction import rescale_zero_terminal_snr_sigmas
|
||||
|
||||
|
||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||
@@ -969,25 +970,22 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.n_iter > 1:
|
||||
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
|
||||
|
||||
# TODO: This currently seems broken. It should be fixed or removed.
|
||||
sd_models.apply_alpha_schedule_override(p.sd_model, p)
|
||||
|
||||
alphas_cumprod_modifiers = p.sd_model.forge_objects.unet.model_options.get('alphas_cumprod_modifiers', [])
|
||||
alphas_cumprod_backup = None
|
||||
|
||||
if len(alphas_cumprod_modifiers) > 0:
|
||||
alphas_cumprod_backup = p.sd_model.alphas_cumprod
|
||||
for modifier in alphas_cumprod_modifiers:
|
||||
p.sd_model.alphas_cumprod = modifier(p.sd_model.alphas_cumprod)
|
||||
p.sd_model.forge_objects.unet.model.model_sampling.set_sigmas(((1 - p.sd_model.alphas_cumprod) / p.sd_model.alphas_cumprod) ** 0.5)
|
||||
sigmas_backup = None
|
||||
if opts.sd_noise_schedule == "Zero Terminal SNR" and p is not None:
|
||||
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
|
||||
sigmas_backup = p.sd_model.forge_objects.unet.model.predictor.sigmas
|
||||
p.sd_model.forge_objects.unet.model.predictor.set_sigmas(rescale_zero_terminal_snr_sigmas(p.sd_model.forge_objects.unet.model.predictor.sigmas))
|
||||
|
||||
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
||||
|
||||
for x_sample in samples_ddim:
|
||||
p.latents_after_sampling.append(x_sample)
|
||||
|
||||
if alphas_cumprod_backup is not None:
|
||||
p.sd_model.alphas_cumprod = alphas_cumprod_backup
|
||||
p.sd_model.forge_objects.unet.model.model_sampling.set_sigmas(((1 - p.sd_model.alphas_cumprod) / p.sd_model.alphas_cumprod) ** 0.5)
|
||||
if sigmas_backup is not None:
|
||||
p.sd_model.forge_objects.unet.model.predictor.set_sigmas(sigmas_backup)
|
||||
|
||||
if p.scripts is not None:
|
||||
ps = scripts.PostSampleArgs(samples_ddim)
|
||||
|
||||
Reference in New Issue
Block a user