mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-01 13:59:47 +00:00
advanced controlnet apply finished
This commit is contained in:
@@ -105,9 +105,9 @@ class ControlNetExampleForge(scripts.Script):
|
||||
'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
|
||||
}
|
||||
negative_advanced_weighting = {
|
||||
'input': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2],
|
||||
'middle': [1.0],
|
||||
'output': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2]
|
||||
'input': [0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25],
|
||||
'middle': [1.05],
|
||||
'output': [0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95, 1.05, 1.15, 1.25]
|
||||
}
|
||||
|
||||
# The advanced_frame_weighting is a weight applied to each image in a batch.
|
||||
@@ -125,10 +125,10 @@ class ControlNetExampleForge(scripts.Script):
|
||||
advanced_sigma_weighting = lambda s: (s - sigma_min) / (sigma_max - sigma_min)
|
||||
|
||||
# But in this simple example we do not use them
|
||||
# positive_advanced_weighting = None
|
||||
# negative_advanced_weighting = None
|
||||
# advanced_frame_weighting = None
|
||||
# advanced_sigma_weighting = None
|
||||
positive_advanced_weighting = None
|
||||
negative_advanced_weighting = None
|
||||
advanced_frame_weighting = None
|
||||
advanced_sigma_weighting = None
|
||||
|
||||
unet = apply_controlnet_advanced(unet=unet, controlnet=self.model, image_bhwc=control_image,
|
||||
strength=0.6, start_percent=0.0, end_percent=0.8,
|
||||
|
||||
@@ -1,3 +1,10 @@
|
||||
import torch
|
||||
|
||||
|
||||
def get_at(array, index, default=None):
|
||||
return array[index] if 0 <= index < len(array) else default
|
||||
|
||||
|
||||
def apply_controlnet_advanced(
|
||||
unet,
|
||||
controlnet,
|
||||
@@ -75,7 +82,36 @@ def compute_controlnet_weighting(
|
||||
sigmas = transformer_options['sigmas']
|
||||
cond_mark = transformer_options['cond_mark']
|
||||
|
||||
if advanced_frame_weighting is not None:
|
||||
advanced_frame_weighting = torch.Tensor(advanced_frame_weighting * len(cond_or_uncond)).to(sigmas)
|
||||
assert advanced_frame_weighting.shape[0] == cond_mark.shape[0], \
|
||||
'Frame weighting list length is different from batch size!'
|
||||
|
||||
if advanced_sigma_weighting is not None:
|
||||
advanced_sigma_weighting = advanced_sigma_weighting(sigmas)
|
||||
advanced_sigma_weighting = torch.cat([advanced_sigma_weighting(sigmas)] * len(cond_or_uncond))
|
||||
|
||||
for k, v in control.items():
|
||||
for i in range(len(v)):
|
||||
positive_weight = 1.0
|
||||
negative_weight = 1.0
|
||||
sigma_weight = 1.0
|
||||
frame_weight = 1.0
|
||||
|
||||
if positive_advanced_weighting is not None:
|
||||
positive_weight = get_at(positive_advanced_weighting.get(k, []), i, 1.0)
|
||||
|
||||
if negative_advanced_weighting is not None:
|
||||
negative_weight = get_at(negative_advanced_weighting.get(k, []), i, 1.0)
|
||||
|
||||
if advanced_sigma_weighting is not None:
|
||||
sigma_weight = advanced_sigma_weighting
|
||||
|
||||
if advanced_frame_weighting is not None:
|
||||
frame_weight = advanced_frame_weighting
|
||||
|
||||
final_weight = positive_weight * (1.0 - cond_mark) + negative_weight * cond_mark
|
||||
final_weight = final_weight * sigma_weight * frame_weight
|
||||
|
||||
control[k][i] = control[k][i] * final_weight[:, None, None, None]
|
||||
|
||||
return control
|
||||
|
||||
Reference in New Issue
Block a user