mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-11 10:29:57 +00:00
Create forge_z123.py
This commit is contained in:
100
extensions-builtin/sd_forge_z123/scripts/forge_z123.py
Normal file
100
extensions-builtin/sd_forge_z123/scripts/forge_z123.py
Normal file
@@ -0,0 +1,100 @@
|
||||
import torch
|
||||
import gradio as gr
|
||||
import os
|
||||
import pathlib
|
||||
|
||||
from modules import script_callbacks
|
||||
from modules.paths import models_path
|
||||
from modules.ui_common import ToolButton, refresh_symbol
|
||||
from modules import shared
|
||||
|
||||
from modules_forge.forge_util import numpy_to_pytorch, pytorch_to_numpy
|
||||
from ldm_patched.modules.sd import load_checkpoint_guess_config
|
||||
from ldm_patched.contrib.external_stable3d import StableZero123_Conditioning
|
||||
from ldm_patched.contrib.external import KSampler, VAEDecode
|
||||
|
||||
|
||||
opStableZero123_Conditioning = StableZero123_Conditioning()
|
||||
opKSampler = KSampler()
|
||||
opVAEDecode = VAEDecode()
|
||||
|
||||
svd_root = os.path.join(models_path, 'z123')
|
||||
os.makedirs(svd_root, exist_ok=True)
|
||||
svd_filenames = []
|
||||
|
||||
|
||||
def update_svd_filenames():
|
||||
global svd_filenames
|
||||
svd_filenames = [
|
||||
pathlib.Path(x).name for x in
|
||||
shared.walk_files(svd_root, allowed_extensions=[".pt", ".ckpt", ".safetensors"])
|
||||
]
|
||||
return svd_filenames
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
@torch.no_grad()
|
||||
def predict(filename, width, height, batch_size, elevation, azimuth,
|
||||
sampling_seed, sampling_steps, sampling_cfg, sampling_sampler_name, sampling_scheduler, sampling_denoise, input_image):
|
||||
filename = os.path.join(svd_root, filename)
|
||||
model, _, vae, clip_vision = \
|
||||
load_checkpoint_guess_config(filename, output_vae=True, output_clip=False, output_clipvision=True)
|
||||
init_image = numpy_to_pytorch(input_image)
|
||||
positive, negative, latent_image = opStableZero123_Conditioning.encode(
|
||||
clip_vision, init_image, vae, width, height, batch_size, elevation, azimuth)
|
||||
output_latent = opKSampler.sample(model, sampling_seed, sampling_steps, sampling_cfg,
|
||||
sampling_sampler_name, sampling_scheduler, positive,
|
||||
negative, latent_image, sampling_denoise)[0]
|
||||
output_pixels = opVAEDecode.decode(vae, output_latent)[0]
|
||||
outputs = pytorch_to_numpy(output_pixels)
|
||||
return outputs
|
||||
|
||||
|
||||
def on_ui_tabs():
|
||||
with gr.Blocks() as svd_block:
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
input_image = gr.Image(label='Input Image', source='upload', type='numpy', height=400)
|
||||
|
||||
with gr.Row():
|
||||
filename = gr.Dropdown(label="SVD Checkpoint Filename",
|
||||
choices=svd_filenames,
|
||||
value=svd_filenames[0] if len(svd_filenames) > 0 else None)
|
||||
refresh_button = ToolButton(value=refresh_symbol, tooltip="Refresh")
|
||||
refresh_button.click(
|
||||
fn=lambda: gr.update(choices=update_svd_filenames),
|
||||
inputs=[], outputs=filename)
|
||||
|
||||
width = gr.Slider(label='Width', minimum=16, maximum=8192, step=8, value=256)
|
||||
height = gr.Slider(label='Height', minimum=16, maximum=8192, step=8, value=256)
|
||||
batch_size = gr.Slider(label='Batch Size', minimum=1, maximum=4096, step=1, value=4)
|
||||
elevation = gr.Slider(label='Elevation', minimum=-180.0, maximum=180.0, step=0.001, value=10.0)
|
||||
azimuth = gr.Slider(label='Azimuth', minimum=-180.0, maximum=180.0, step=0.001, value=142.0)
|
||||
sampling_denoise = gr.Slider(label='Sampling Denoise', minimum=0.0, maximum=1.0, step=0.01, value=1.0)
|
||||
sampling_steps = gr.Slider(label='Sampling Steps', minimum=1, maximum=10000, step=1, value=20)
|
||||
sampling_cfg = gr.Slider(label='CFG Scale', minimum=0.0, maximum=100.0, step=0.1, value=5.0)
|
||||
sampling_sampler_name = gr.Radio(label='Sampling Sampler Name',
|
||||
choices=['euler', 'euler_ancestral', 'heun', 'heunpp2', 'dpm_2',
|
||||
'dpm_2_ancestral', 'lms', 'dpm_fast', 'dpm_adaptive',
|
||||
'dpmpp_2s_ancestral', 'dpmpp_sde', 'dpmpp_sde_gpu',
|
||||
'dpmpp_2m', 'dpmpp_2m_sde', 'dpmpp_2m_sde_gpu',
|
||||
'dpmpp_3m_sde', 'dpmpp_3m_sde_gpu', 'ddpm', 'lcm', 'ddim',
|
||||
'uni_pc', 'uni_pc_bh2'], value='euler')
|
||||
sampling_scheduler = gr.Radio(label='Sampling Scheduler',
|
||||
choices=['normal', 'karras', 'exponential', 'sgm_uniform', 'simple',
|
||||
'ddim_uniform'], value='sgm_uniform')
|
||||
sampling_seed = gr.Number(label='Seed', value=12345, precision=0)
|
||||
generate_button = gr.Button(value="Generate")
|
||||
|
||||
ctrls = [filename, width, height, batch_size, elevation, azimuth, sampling_seed, sampling_steps, sampling_cfg, sampling_sampler_name, sampling_scheduler, sampling_denoise, input_image]
|
||||
|
||||
with gr.Column():
|
||||
output_gallery = gr.Gallery(label='Gallery', show_label=False, object_fit='contain',
|
||||
visible=True, height=1024, columns=4)
|
||||
|
||||
generate_button.click(predict, inputs=ctrls, outputs=[output_gallery])
|
||||
return [(svd_block, "Z123", "z123")]
|
||||
|
||||
|
||||
update_svd_filenames()
|
||||
script_callbacks.on_ui_tabs(on_ui_tabs)
|
||||
Reference in New Issue
Block a user