mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-01-26 19:09:45 +00:00
Adding Depth Anything v2 to ControlNet Integrated (#1519)
* Update install.py adding install of depth anything v2 * Add files via upload adding depth anything v2 preprocessor * Update preprocessor_compiled.py adding preprocessor * Update preprocessor.py adding preprocessor functions
This commit is contained in:
committed by
GitHub
parent
3c4eb78cd1
commit
d1121baf80
@@ -0,0 +1,78 @@
|
||||
import os
|
||||
import torch
|
||||
import cv2
|
||||
import numpy as np
|
||||
import torch.nn.functional as F
|
||||
from torchvision.transforms import Compose
|
||||
from safetensors.torch import load_file
|
||||
|
||||
from depth_anything_v2.dpt import DepthAnythingV2
|
||||
from depth_anything_v2.util.transform import Resize, NormalizeImage, PrepareForNet
|
||||
from .util import load_model
|
||||
from .annotator_path import models_path
|
||||
|
||||
transform = Compose(
|
||||
[
|
||||
Resize(
|
||||
width=518,
|
||||
height=518,
|
||||
resize_target=False,
|
||||
keep_aspect_ratio=True,
|
||||
ensure_multiple_of=14,
|
||||
resize_method="lower_bound",
|
||||
image_interpolation_method=cv2.INTER_CUBIC,
|
||||
),
|
||||
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||
PrepareForNet(),
|
||||
]
|
||||
)
|
||||
|
||||
class DepthAnythingV2Detector:
|
||||
"""https://github.com/MackinationsAi/Upgraded-Depth-Anything-V2"""
|
||||
|
||||
model_dir = os.path.join(models_path, "depth_anything_v2")
|
||||
|
||||
def __init__(self, device: torch.device):
|
||||
self.device = device
|
||||
self.model = (
|
||||
DepthAnythingV2(
|
||||
encoder="vitl",
|
||||
features=256,
|
||||
out_channels=[256, 512, 1024, 1024],
|
||||
)
|
||||
.to(device)
|
||||
.eval()
|
||||
)
|
||||
remote_url = os.environ.get(
|
||||
"CONTROLNET_DEPTH_ANYTHING_V2_MODEL_URL",
|
||||
"https://huggingface.co/MackinationsAi/Depth-Anything-V2_Safetensors/resolve/main/depth_anything_v2_vitl.safetensors",
|
||||
)
|
||||
model_path = load_model(
|
||||
"depth_anything_v2_vitl.safetensors", remote_url=remote_url, model_dir=self.model_dir
|
||||
)
|
||||
self.model.load_state_dict(load_file(model_path))
|
||||
|
||||
def __call__(self, image: np.ndarray, colored: bool = True) -> np.ndarray:
|
||||
self.model.to(self.device)
|
||||
h, w = image.shape[:2]
|
||||
|
||||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0
|
||||
image = transform({"image": image})["image"]
|
||||
image = torch.from_numpy(image).unsqueeze(0).to(self.device)
|
||||
@torch.no_grad()
|
||||
def predict_depth(model, image):
|
||||
return model(image)
|
||||
depth = predict_depth(self.model, image)
|
||||
depth = F.interpolate(
|
||||
depth[None], (h, w), mode="bilinear", align_corners=False
|
||||
)[0, 0]
|
||||
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
||||
depth = depth.cpu().numpy().astype(np.uint8)
|
||||
if colored:
|
||||
depth_color = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1]
|
||||
return depth_color
|
||||
else:
|
||||
return depth
|
||||
|
||||
def unload_model(self):
|
||||
self.model.to("cpu")
|
||||
@@ -148,4 +148,13 @@ try_install_from_wheel(
|
||||
"https://github.com/huchenlei/Depth-Anything/releases/download/v1.0.0/depth_anything-2024.1.22.0-py2.py3-none-any.whl",
|
||||
),
|
||||
)
|
||||
|
||||
try_install_from_wheel(
|
||||
"depth_anything_v2",
|
||||
wheel_url=os.environ.get(
|
||||
"DEPTH_ANYTHING_V2_WHEEL",
|
||||
"https://github.com/MackinationsAi/UDAV2-ControlNet/releases/download/v1.0.0/depth_anything_v2-2024.7.1.0-py2.py3-none-any.whl",
|
||||
),
|
||||
)
|
||||
|
||||
try_remove_legacy_submodule()
|
||||
|
||||
@@ -208,6 +208,23 @@ def unload_depth_anything():
|
||||
if model_depth_anything is not None:
|
||||
model_depth_anything.unload_model()
|
||||
|
||||
model_depth_anything_v2 = None
|
||||
|
||||
|
||||
def depth_anything_v2(img, res:int = 512, colored:bool = True, **kwargs):
|
||||
img, remove_pad = resize_image_with_pad(img, res)
|
||||
global model_depth_anything_v2
|
||||
if model_depth_anything_v2 is None:
|
||||
with Extra(torch_handler):
|
||||
from annotator.depth_anything_v2 import DepthAnythingV2Detector
|
||||
device = devices.get_device_for("controlnet")
|
||||
model_depth_anything_v2 = DepthAnythingV2Detector(device)
|
||||
return remove_pad(model_depth_anything_v2(img, colored=colored)), True
|
||||
|
||||
|
||||
def unload_depth_anything_v2():
|
||||
if model_depth_anything_v2 is not None:
|
||||
model_depth_anything_v2.unload_model()
|
||||
|
||||
model_midas = None
|
||||
|
||||
|
||||
@@ -168,6 +168,22 @@ legacy_preprocessors = {
|
||||
"Depth"
|
||||
]
|
||||
},
|
||||
"depth_anything_v2": {
|
||||
"label": "depth_anything_v2",
|
||||
"call_function": functools.partial(depth_anything_v2, colored=False),
|
||||
"unload_function": unload_depth_anything_v2,
|
||||
"managed_model": "model_depth_anything_v2",
|
||||
"model_free": False,
|
||||
"no_control_mode": False,
|
||||
"resolution": None,
|
||||
"slider_1": None,
|
||||
"slider_2": None,
|
||||
"slider_3": None,
|
||||
"priority": 0,
|
||||
"tags": [
|
||||
"Depth"
|
||||
]
|
||||
},
|
||||
"depth_hand_refiner": {
|
||||
"label": "depth_hand_refiner",
|
||||
"call_function": g_hand_refiner_model.run_model,
|
||||
|
||||
Reference in New Issue
Block a user