mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-01 22:09:46 +00:00
IllusionDiffusion
This commit is contained in:
305
extensions-builtin/forge_space_illusion_diffusion/forge_app.py
Normal file
305
extensions-builtin/forge_space_illusion_diffusion/forge_app.py
Normal file
@@ -0,0 +1,305 @@
|
||||
import spaces
|
||||
import torch
|
||||
import gradio as gr
|
||||
from gradio import processing_utils, utils
|
||||
from PIL import Image
|
||||
import random
|
||||
|
||||
from diffusers import (
|
||||
DiffusionPipeline,
|
||||
AutoencoderKL,
|
||||
StableDiffusionControlNetPipeline,
|
||||
ControlNetModel,
|
||||
StableDiffusionLatentUpscalePipeline,
|
||||
StableDiffusionImg2ImgPipeline,
|
||||
StableDiffusionControlNetImg2ImgPipeline,
|
||||
DPMSolverMultistepScheduler,
|
||||
EulerDiscreteScheduler
|
||||
)
|
||||
import tempfile
|
||||
import time
|
||||
from share_btn import community_icon_html, loading_icon_html, share_js
|
||||
import user_history
|
||||
from illusion_style import css
|
||||
import os
|
||||
from transformers import CLIPImageProcessor
|
||||
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
||||
|
||||
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
|
||||
|
||||
|
||||
with spaces.GPUObject() as gpu_object:
|
||||
# Initialize both pipelines
|
||||
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
|
||||
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
|
||||
|
||||
# Initialize the safety checker conditionally
|
||||
SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
|
||||
safety_checker = None
|
||||
feature_extractor = None
|
||||
if SAFETY_CHECKER_ENABLED:
|
||||
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
|
||||
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
||||
|
||||
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
||||
BASE_MODEL,
|
||||
controlnet=controlnet,
|
||||
vae=vae,
|
||||
safety_checker=safety_checker,
|
||||
feature_extractor=feature_extractor,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
cn_and_unet = torch.nn.ModuleList([main_pipe.unet, main_pipe.controlnet])
|
||||
|
||||
spaces.automatically_move_to_gpu_when_forward(main_pipe.unet, target_model=cn_and_unet)
|
||||
spaces.automatically_move_to_gpu_when_forward(main_pipe.controlnet, target_model=cn_and_unet)
|
||||
spaces.automatically_move_to_gpu_when_forward(main_pipe.vae)
|
||||
spaces.automatically_move_to_gpu_when_forward(main_pipe.text_encoder)
|
||||
spaces.change_attention_from_diffusers_to_forge(main_pipe.unet)
|
||||
spaces.change_attention_from_diffusers_to_forge(main_pipe.vae)
|
||||
|
||||
# Function to check NSFW images
|
||||
# def check_nsfw_images(images: list[Image.Image]) -> tuple[list[Image.Image], list[bool]]:
|
||||
# if SAFETY_CHECKER_ENABLED:
|
||||
# safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda")
|
||||
# has_nsfw_concepts = safety_checker(
|
||||
# images=[images],
|
||||
# clip_input=safety_checker_input.pixel_values.to("cuda")
|
||||
# )
|
||||
# return images, has_nsfw_concepts
|
||||
# else:
|
||||
# return images, [False] * len(images)
|
||||
|
||||
# main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
||||
# main_pipe.unet.to(memory_format=torch.channels_last)
|
||||
# main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
||||
# model_id = "stabilityai/sd-x2-latent-upscaler"
|
||||
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
|
||||
|
||||
# image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
|
||||
# upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
||||
# upscaler.to("cuda")
|
||||
|
||||
|
||||
# Sampler map
|
||||
SAMPLER_MAP = {
|
||||
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
|
||||
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
|
||||
}
|
||||
|
||||
|
||||
def center_crop_resize(img, output_size=(512, 512)):
|
||||
width, height = img.size
|
||||
|
||||
# Calculate dimensions to crop to the center
|
||||
new_dimension = min(width, height)
|
||||
left = (width - new_dimension) / 2
|
||||
top = (height - new_dimension) / 2
|
||||
right = (width + new_dimension) / 2
|
||||
bottom = (height + new_dimension) / 2
|
||||
|
||||
# Crop and resize
|
||||
img = img.crop((left, top, right, bottom))
|
||||
img = img.resize(output_size)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
def common_upscale(samples, width, height, upscale_method, crop=False):
|
||||
if crop == "center":
|
||||
old_width = samples.shape[3]
|
||||
old_height = samples.shape[2]
|
||||
old_aspect = old_width / old_height
|
||||
new_aspect = width / height
|
||||
x = 0
|
||||
y = 0
|
||||
if old_aspect > new_aspect:
|
||||
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
|
||||
elif old_aspect < new_aspect:
|
||||
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
|
||||
s = samples[:, :, y:old_height - y, x:old_width - x]
|
||||
else:
|
||||
s = samples
|
||||
|
||||
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
|
||||
|
||||
|
||||
def upscale(samples, upscale_method, scale_by):
|
||||
# s = samples.copy()
|
||||
width = round(samples["images"].shape[3] * scale_by)
|
||||
height = round(samples["images"].shape[2] * scale_by)
|
||||
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
|
||||
return (s)
|
||||
|
||||
|
||||
def check_inputs(prompt: str, control_image: Image.Image):
|
||||
if control_image is None:
|
||||
raise gr.Error("Please select or upload an Input Illusion")
|
||||
if prompt is None or prompt == "":
|
||||
raise gr.Error("Prompt is required")
|
||||
|
||||
|
||||
def convert_to_pil(base64_image):
|
||||
pil_image = Image.open(base64_image)
|
||||
return pil_image
|
||||
|
||||
|
||||
def convert_to_base64(pil_image):
|
||||
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
|
||||
image.save(temp_file.name)
|
||||
return temp_file.name
|
||||
|
||||
|
||||
# Inference function
|
||||
@spaces.GPU(gpu_objects=[gpu_object], manual_load=True)
|
||||
def inference(
|
||||
control_image: Image.Image,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
guidance_scale: float = 8.0,
|
||||
controlnet_conditioning_scale: float = 1,
|
||||
control_guidance_start: float = 1,
|
||||
control_guidance_end: float = 1,
|
||||
upscaler_strength: float = 0.5,
|
||||
seed: int = -1,
|
||||
sampler="DPM++ Karras SDE",
|
||||
progress=gr.Progress(track_tqdm=True),
|
||||
profile=None,
|
||||
):
|
||||
start_time = time.time()
|
||||
start_time_struct = time.localtime(start_time)
|
||||
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
|
||||
print(f"Inference started at {start_time_formatted}")
|
||||
|
||||
# Generate the initial image
|
||||
# init_image = init_pipe(prompt).images[0]
|
||||
|
||||
# Rest of your existing code
|
||||
control_image_small = center_crop_resize(control_image)
|
||||
control_image_large = center_crop_resize(control_image, (1024, 1024))
|
||||
|
||||
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
|
||||
my_seed = random.randint(0, 2 ** 32 - 1) if seed == -1 else seed
|
||||
generator = torch.Generator(device="cuda").manual_seed(my_seed)
|
||||
|
||||
out = main_pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
image=control_image_small,
|
||||
guidance_scale=float(guidance_scale),
|
||||
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
|
||||
generator=generator,
|
||||
control_guidance_start=float(control_guidance_start),
|
||||
control_guidance_end=float(control_guidance_end),
|
||||
num_inference_steps=15,
|
||||
output_type="latent"
|
||||
)
|
||||
upscaled_latents = upscale(out, "nearest-exact", 2)
|
||||
out_image = image_pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
control_image=control_image_large,
|
||||
image=upscaled_latents,
|
||||
guidance_scale=float(guidance_scale),
|
||||
generator=generator,
|
||||
num_inference_steps=20,
|
||||
strength=upscaler_strength,
|
||||
control_guidance_start=float(control_guidance_start),
|
||||
control_guidance_end=float(control_guidance_end),
|
||||
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
|
||||
)
|
||||
end_time = time.time()
|
||||
end_time_struct = time.localtime(end_time)
|
||||
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
|
||||
print(f"Inference ended at {end_time_formatted}, taking {end_time - start_time}s")
|
||||
|
||||
# Save image + metadata
|
||||
user_history.save_image(
|
||||
label=prompt,
|
||||
image=out_image["images"][0],
|
||||
profile=profile,
|
||||
metadata={
|
||||
"prompt": prompt,
|
||||
"negative_prompt": negative_prompt,
|
||||
"guidance_scale": guidance_scale,
|
||||
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
||||
"control_guidance_start": control_guidance_start,
|
||||
"control_guidance_end": control_guidance_end,
|
||||
"upscaler_strength": upscaler_strength,
|
||||
"seed": seed,
|
||||
"sampler": sampler,
|
||||
},
|
||||
)
|
||||
|
||||
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
|
||||
|
||||
|
||||
with gr.Blocks() as app:
|
||||
gr.Markdown(
|
||||
'''
|
||||
<div style="text-align: center;">
|
||||
<h1>Illusion Diffusion HQ 🌀</h1>
|
||||
<p style="font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</p>
|
||||
<p>Illusion Diffusion is back up with a safety checker! Because I have been asked, if you would like to support me, consider using <a href="https://deforum.studio">deforum.studio</a></p>
|
||||
<p>A space by AP <a href="https://twitter.com/angrypenguinPNG">Follow me on Twitter</a> with big contributions from <a href="https://twitter.com/multimodalart">multimodalart</a></p>
|
||||
<p>This project works by using <a href="https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster">Monster Labs QR Control Net</a>. Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: <a href="https://twitter.com/MrUgleh">MrUgleh</a> for discovering the workflow :)</p>
|
||||
</div>
|
||||
'''
|
||||
)
|
||||
|
||||
state_img_input = gr.State()
|
||||
state_img_output = gr.State()
|
||||
with gr.Row():
|
||||
with gr.Column():
|
||||
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
|
||||
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale")
|
||||
examples = ["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg"]
|
||||
examples = [spaces.convert_root_path() + y for y in examples]
|
||||
gr.Examples(examples=examples, inputs=control_image)
|
||||
prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and castle in the distance")
|
||||
negative_prompt = gr.Textbox(label="Negative Prompt", info="Type what you don't want to see", value="low quality", elem_id="negative_prompt")
|
||||
with gr.Accordion(label="Advanced Options", open=False):
|
||||
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
|
||||
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
|
||||
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
|
||||
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
|
||||
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
|
||||
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed")
|
||||
used_seed = gr.Number(label="Last seed used", interactive=False)
|
||||
run_btn = gr.Button("Run")
|
||||
with gr.Column():
|
||||
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
|
||||
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
|
||||
community_icon = gr.HTML(community_icon_html)
|
||||
loading_icon = gr.HTML(loading_icon_html)
|
||||
share_button = gr.Button("Share to community", elem_id="share-btn")
|
||||
|
||||
prompt.submit(
|
||||
check_inputs,
|
||||
inputs=[prompt, control_image],
|
||||
queue=False
|
||||
).success(
|
||||
inference,
|
||||
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
||||
outputs=[result_image, result_image, share_group, used_seed])
|
||||
|
||||
run_btn.click(
|
||||
check_inputs,
|
||||
inputs=[prompt, control_image],
|
||||
queue=False
|
||||
).success(
|
||||
inference,
|
||||
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
|
||||
outputs=[result_image, result_image, share_group, used_seed])
|
||||
|
||||
share_button.click(None, [], [], js=share_js)
|
||||
|
||||
with gr.Blocks(css=css) as demo:
|
||||
with gr.Tab("Demo"):
|
||||
app.render()
|
||||
with gr.Tab("Past generations"):
|
||||
user_history.render()
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch()
|
||||
@@ -0,0 +1,6 @@
|
||||
{
|
||||
"tag": "General Image Processing and Applications",
|
||||
"title": "IllusionDiffusion (Monster Labs QR Control Net)",
|
||||
"repo_id": "AP123/IllusionDiffusion",
|
||||
"revision": "7a874d15dccd7b8c6c30d3440f07ddedb54ec454"
|
||||
}
|
||||
Reference in New Issue
Block a user