mirror of
https://github.com/lllyasviel/stable-diffusion-webui-forge.git
synced 2026-02-08 08:59:58 +00:00
198 lines
6.2 KiB
Python
198 lines
6.2 KiB
Python
from typing import List, Optional
|
|
|
|
import numpy as np
|
|
from fastapi import FastAPI, Body
|
|
from fastapi.exceptions import HTTPException
|
|
from pydantic import BaseModel
|
|
|
|
from PIL import Image
|
|
|
|
import gradio as gr
|
|
|
|
from modules.api.models import *
|
|
from modules.api import api
|
|
|
|
from scripts import external_code, global_state
|
|
from scripts.processor import preprocessor_filters
|
|
from scripts.logging import logger
|
|
from annotator.openpose import draw_poses, decode_json_as_poses
|
|
from annotator.openpose.animalpose import draw_animalposes
|
|
|
|
|
|
def encode_to_base64(image):
|
|
if isinstance(image, str):
|
|
return image
|
|
elif isinstance(image, Image.Image):
|
|
return api.encode_pil_to_base64(image)
|
|
elif isinstance(image, np.ndarray):
|
|
return encode_np_to_base64(image)
|
|
else:
|
|
return ""
|
|
|
|
|
|
def encode_np_to_base64(image):
|
|
pil = Image.fromarray(image)
|
|
return api.encode_pil_to_base64(pil)
|
|
|
|
|
|
def controlnet_api(_: gr.Blocks, app: FastAPI):
|
|
@app.get("/controlnet/version")
|
|
async def version():
|
|
return {"version": external_code.get_api_version()}
|
|
|
|
@app.get("/controlnet/model_list")
|
|
async def model_list(update: bool = True):
|
|
up_to_date_model_list = external_code.get_models(update=update)
|
|
logger.debug(up_to_date_model_list)
|
|
return {"model_list": up_to_date_model_list}
|
|
|
|
@app.get("/controlnet/module_list")
|
|
async def module_list(alias_names: bool = False):
|
|
_module_list = external_code.get_modules(alias_names)
|
|
logger.debug(_module_list)
|
|
|
|
return {
|
|
"module_list": _module_list,
|
|
"module_detail": external_code.get_modules_detail(alias_names),
|
|
}
|
|
|
|
@app.get("/controlnet/control_types")
|
|
async def control_types():
|
|
def format_control_type(
|
|
filtered_preprocessor_list,
|
|
filtered_model_list,
|
|
default_option,
|
|
default_model,
|
|
):
|
|
return {
|
|
"module_list": filtered_preprocessor_list,
|
|
"model_list": filtered_model_list,
|
|
"default_option": default_option,
|
|
"default_model": default_model,
|
|
}
|
|
|
|
return {
|
|
"control_types": {
|
|
control_type: format_control_type(
|
|
*global_state.select_control_type(control_type)
|
|
)
|
|
for control_type in preprocessor_filters.keys()
|
|
}
|
|
}
|
|
|
|
@app.get("/controlnet/settings")
|
|
async def settings():
|
|
max_models_num = external_code.get_max_models_num()
|
|
return {"control_net_unit_count": max_models_num}
|
|
|
|
cached_cn_preprocessors = global_state.cache_preprocessors(
|
|
global_state.cn_preprocessor_modules
|
|
)
|
|
|
|
@app.post("/controlnet/detect")
|
|
async def detect(
|
|
controlnet_module: str = Body("none", title="Controlnet Module"),
|
|
controlnet_input_images: List[str] = Body([], title="Controlnet Input Images"),
|
|
controlnet_processor_res: int = Body(
|
|
512, title="Controlnet Processor Resolution"
|
|
),
|
|
controlnet_threshold_a: float = Body(64, title="Controlnet Threshold a"),
|
|
controlnet_threshold_b: float = Body(64, title="Controlnet Threshold b"),
|
|
low_vram: bool = Body(False, title="Low vram"),
|
|
):
|
|
controlnet_module = global_state.reverse_preprocessor_aliases.get(
|
|
controlnet_module, controlnet_module
|
|
)
|
|
|
|
if controlnet_module not in cached_cn_preprocessors:
|
|
raise HTTPException(status_code=422, detail="Module not available")
|
|
|
|
if len(controlnet_input_images) == 0:
|
|
raise HTTPException(status_code=422, detail="No image selected")
|
|
|
|
logger.info(
|
|
f"Detecting {str(len(controlnet_input_images))} images with the {controlnet_module} module."
|
|
)
|
|
|
|
results = []
|
|
poses = []
|
|
|
|
processor_module = cached_cn_preprocessors[controlnet_module]
|
|
|
|
for input_image in controlnet_input_images:
|
|
img = external_code.to_base64_nparray(input_image)
|
|
|
|
class JsonAcceptor:
|
|
def __init__(self) -> None:
|
|
self.value = None
|
|
|
|
def accept(self, json_dict: dict) -> None:
|
|
self.value = json_dict
|
|
|
|
json_acceptor = JsonAcceptor()
|
|
|
|
results.append(
|
|
processor_module(
|
|
img,
|
|
res=controlnet_processor_res,
|
|
thr_a=controlnet_threshold_a,
|
|
thr_b=controlnet_threshold_b,
|
|
json_pose_callback=json_acceptor.accept,
|
|
low_vram=low_vram,
|
|
)[0]
|
|
)
|
|
|
|
if "openpose" in controlnet_module:
|
|
assert json_acceptor.value is not None
|
|
poses.append(json_acceptor.value)
|
|
|
|
global_state.cn_preprocessor_unloadable.get(controlnet_module, lambda: None)()
|
|
results64 = list(map(encode_to_base64, results))
|
|
res = {"images": results64, "info": "Success"}
|
|
if poses:
|
|
res["poses"] = poses
|
|
|
|
return res
|
|
|
|
class Person(BaseModel):
|
|
pose_keypoints_2d: List[float]
|
|
hand_right_keypoints_2d: Optional[List[float]]
|
|
hand_left_keypoints_2d: Optional[List[float]]
|
|
face_keypoints_2d: Optional[List[float]]
|
|
|
|
class PoseData(BaseModel):
|
|
people: List[Person]
|
|
canvas_width: int
|
|
canvas_height: int
|
|
|
|
@app.post("/controlnet/render_openpose_json")
|
|
async def render_openpose_json(
|
|
pose_data: List[PoseData] = Body([], title="Pose json files to render.")
|
|
):
|
|
if not pose_data:
|
|
return {"info": "No pose data detected."}
|
|
else:
|
|
|
|
def draw(poses, animals, H, W):
|
|
if poses:
|
|
assert len(animals) == 0
|
|
return draw_poses(poses, H, W)
|
|
else:
|
|
return draw_animalposes(animals, H, W)
|
|
|
|
return {
|
|
"images": [
|
|
encode_to_base64(draw(*decode_json_as_poses(pose.dict())))
|
|
for pose in pose_data
|
|
],
|
|
"info": "Success",
|
|
}
|
|
|
|
|
|
try:
|
|
import modules.script_callbacks as script_callbacks
|
|
|
|
script_callbacks.on_app_started(controlnet_api)
|
|
except:
|
|
pass
|