mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Bugfixes and cleanup
This commit is contained in:
@@ -807,10 +807,12 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
with self.timer('prepare_latents'):
|
||||
dtype = get_torch_dtype(self.train_config.dtype)
|
||||
imgs = None
|
||||
is_reg = any(batch.get_is_reg_list())
|
||||
if batch.tensor is not None:
|
||||
imgs = batch.tensor
|
||||
imgs = imgs.to(self.device_torch, dtype=dtype)
|
||||
if self.train_config.img_multiplier is not None:
|
||||
# dont adjust for regs.
|
||||
if self.train_config.img_multiplier is not None and not is_reg:
|
||||
# do it ad contrast
|
||||
imgs = reduce_contrast(imgs, self.train_config.img_multiplier)
|
||||
if batch.latents is not None:
|
||||
@@ -1495,8 +1497,10 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
|
||||
try:
|
||||
print(f"Loading optimizer state from {optimizer_state_file_path}")
|
||||
optimizer_state_dict = torch.load(optimizer_state_file_path)
|
||||
optimizer_state_dict = torch.load(optimizer_state_file_path, weights_only=True)
|
||||
optimizer.load_state_dict(optimizer_state_dict)
|
||||
del optimizer_state_dict
|
||||
flush()
|
||||
except Exception as e:
|
||||
print(f"Failed to load optimizer state from {optimizer_state_file_path}")
|
||||
print(e)
|
||||
|
||||
@@ -8,6 +8,7 @@ import sys
|
||||
import os
|
||||
import cv2
|
||||
import random
|
||||
from transformers import CLIPImageProcessor
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
from toolkit.paths import SD_SCRIPTS_ROOT
|
||||
@@ -37,12 +38,25 @@ resolution = 512
|
||||
bucket_tolerance = 64
|
||||
batch_size = 1
|
||||
|
||||
clip_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch16")
|
||||
|
||||
class FakeAdapter:
|
||||
def __init__(self):
|
||||
self.clip_image_processor = clip_processor
|
||||
|
||||
|
||||
## make fake sd
|
||||
class FakeSD:
|
||||
def __init__(self):
|
||||
self.adapter = FakeAdapter()
|
||||
|
||||
|
||||
|
||||
##
|
||||
|
||||
dataset_config = DatasetConfig(
|
||||
dataset_path=dataset_folder,
|
||||
control_path=dataset_folder,
|
||||
clip_image_path=dataset_folder,
|
||||
square_crop=True,
|
||||
resolution=resolution,
|
||||
# caption_ext='json',
|
||||
default_caption='default',
|
||||
@@ -61,123 +75,7 @@ dataset_config = DatasetConfig(
|
||||
# ]
|
||||
)
|
||||
|
||||
dataloader: DataLoader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size)
|
||||
|
||||
def random_blur(img, min_kernel_size=3, max_kernel_size=23, p=0.5):
|
||||
if random.random() < p:
|
||||
kernel_size = random.randint(min_kernel_size, max_kernel_size)
|
||||
# make sure it is odd
|
||||
if kernel_size % 2 == 0:
|
||||
kernel_size += 1
|
||||
img = torchvision.transforms.functional.gaussian_blur(img, kernel_size=kernel_size)
|
||||
return img
|
||||
|
||||
def quantize(image, palette):
|
||||
"""
|
||||
Similar to PIL.Image.quantize() in PyTorch. Built to maintain gradient.
|
||||
Only works for one image i.e. CHW. Does NOT work for batches.
|
||||
ref https://discuss.pytorch.org/t/color-quantization/104528/4
|
||||
"""
|
||||
|
||||
orig_dtype = image.dtype
|
||||
|
||||
C, H, W = image.shape
|
||||
n_colors = palette.shape[0]
|
||||
|
||||
# Easier to work with list of colors
|
||||
flat_img = image.view(C, -1).T # [C, H, W] -> [H*W, C]
|
||||
|
||||
# Repeat image so that there are n_color number of columns of the same image
|
||||
flat_img_per_color = flat_img.unsqueeze(1).expand(-1, n_colors, -1) # [H*W, C] -> [H*W, n_colors, C]
|
||||
|
||||
# Get euclidean distance between each pixel in each column and the column's respective color
|
||||
# i.e. column 1 lists distance of each pixel to color #1 in palette, column 2 to color #2 etc.
|
||||
squared_distance = (flat_img_per_color - palette.unsqueeze(0)) ** 2
|
||||
euclidean_distance = torch.sqrt(torch.sum(squared_distance, dim=-1) + 1e-8) # [H*W, n_colors, C] -> [H*W, n_colors]
|
||||
|
||||
# Get the shortest distance (one value per row (H*W) is selected)
|
||||
min_distances, min_indices = torch.min(euclidean_distance, dim=-1) # [H*W, n_colors] -> [H*W]
|
||||
|
||||
# Create a mask for the closest colors
|
||||
one_hot_mask = torch.nn.functional.one_hot(min_indices, num_classes=n_colors).float() # [H*W, n_colors]
|
||||
|
||||
# Multiply the mask with the palette colors to get the quantized image
|
||||
quantized = torch.matmul(one_hot_mask, palette) # [H*W, n_colors] @ [n_colors, C] -> [H*W, C]
|
||||
|
||||
# Reshape it back to the original input format.
|
||||
quantized_img = quantized.T.view(C, H, W) # [H*W, C] -> [C, H, W]
|
||||
|
||||
return quantized_img.to(orig_dtype)
|
||||
|
||||
|
||||
|
||||
def color_block_imgs(img, neg1_1=False):
|
||||
# expects values 0 - 1
|
||||
orig_dtype = img.dtype
|
||||
if neg1_1:
|
||||
img = img * 0.5 + 0.5
|
||||
|
||||
img = img * 255
|
||||
img = img.clamp(0, 255)
|
||||
img = img.to(torch.uint8)
|
||||
|
||||
img_chunks = torch.chunk(img, img.shape[0], dim=0)
|
||||
|
||||
posterized_chunks = []
|
||||
|
||||
for chunk in img_chunks:
|
||||
img_size = (chunk.shape[2] + chunk.shape[3]) // 2
|
||||
# min kernel size of 1% of image, max 10%
|
||||
min_kernel_size = int(img_size * 0.01)
|
||||
max_kernel_size = int(img_size * 0.1)
|
||||
|
||||
# blur first
|
||||
chunk = random_blur(chunk, min_kernel_size=min_kernel_size, max_kernel_size=max_kernel_size, p=0.8)
|
||||
num_colors = random.randint(1, 16)
|
||||
|
||||
resize_to = 16
|
||||
# chunk = torchvision.transforms.functional.posterize(chunk, num_bits_to_use)
|
||||
|
||||
# mean_color = [int(x.item()) for x in torch.mean(chunk.float(), dim=(0, 2, 3))]
|
||||
|
||||
# shrink the image down to num_colors x num_colors
|
||||
shrunk = torchvision.transforms.functional.resize(chunk, [resize_to, resize_to])
|
||||
|
||||
mean_color = [int(x.item()) for x in torch.mean(shrunk.float(), dim=(0, 2, 3))]
|
||||
|
||||
colors = shrunk.view(3, -1).T
|
||||
# remove duplicates
|
||||
colors = torch.unique(colors, dim=0)
|
||||
colors = colors.numpy()
|
||||
colors = colors.tolist()
|
||||
|
||||
use_colors = [random.choice(colors) for _ in range(num_colors)]
|
||||
|
||||
pallette = torch.tensor([
|
||||
[0, 0, 0],
|
||||
mean_color,
|
||||
[255, 255, 255],
|
||||
] + use_colors, dtype=torch.float32)
|
||||
chunk = quantize(chunk.squeeze(0), pallette).unsqueeze(0)
|
||||
|
||||
# chunk = torchvision.transforms.functional.equalize(chunk)
|
||||
# color jitter
|
||||
if random.random() < 0.5:
|
||||
chunk = torchvision.transforms.functional.adjust_contrast(chunk, random.uniform(1.0, 1.5))
|
||||
if random.random() < 0.5:
|
||||
chunk = torchvision.transforms.functional.adjust_saturation(chunk, random.uniform(1.0, 2.0))
|
||||
# if random.random() < 0.5:
|
||||
# chunk = torchvision.transforms.functional.adjust_brightness(chunk, random.uniform(0.5, 1.5))
|
||||
chunk = random_blur(chunk, p=0.6)
|
||||
posterized_chunks.append(chunk)
|
||||
|
||||
img = torch.cat(posterized_chunks, dim=0)
|
||||
img = img.to(orig_dtype)
|
||||
img = img / 255
|
||||
|
||||
if neg1_1:
|
||||
img = img * 2 - 1
|
||||
return img
|
||||
dataloader: DataLoader = get_dataloader_from_datasets([dataset_config], batch_size=batch_size, sd=FakeSD())
|
||||
|
||||
|
||||
# run through an epoch ang check sizes
|
||||
@@ -186,6 +84,7 @@ for epoch in range(args.epochs):
|
||||
for batch in tqdm(dataloader):
|
||||
batch: 'DataLoaderBatchDTO'
|
||||
img_batch = batch.tensor
|
||||
batch_size, channels, height, width = img_batch.shape
|
||||
|
||||
# img_batch = color_block_imgs(img_batch, neg1_1=True)
|
||||
|
||||
@@ -194,10 +93,14 @@ for epoch in range(args.epochs):
|
||||
big_img = torch.cat(chunks, dim=3)
|
||||
big_img = big_img.squeeze(0)
|
||||
|
||||
control_chunks = torch.chunk(batch.control_tensor, batch_size, dim=0)
|
||||
control_chunks = torch.chunk(batch.clip_image_tensor, batch_size, dim=0)
|
||||
big_control_img = torch.cat(control_chunks, dim=3)
|
||||
big_control_img = big_control_img.squeeze(0) * 2 - 1
|
||||
|
||||
|
||||
# resize control image
|
||||
big_control_img = torchvision.transforms.Resize((width, height))(big_control_img)
|
||||
|
||||
big_img = torch.cat([big_img, big_control_img], dim=2)
|
||||
|
||||
min_val = big_img.min()
|
||||
@@ -208,9 +111,9 @@ for epoch in range(args.epochs):
|
||||
# convert to image
|
||||
img = transforms.ToPILImage()(big_img)
|
||||
|
||||
# show_img(img)
|
||||
show_img(img)
|
||||
|
||||
# time.sleep(1.0)
|
||||
time.sleep(1.0)
|
||||
# if not last epoch
|
||||
if epoch < args.epochs - 1:
|
||||
trigger_dataloader_setup_epoch(dataloader)
|
||||
|
||||
@@ -154,6 +154,7 @@ class AdapterConfig:
|
||||
if num_tokens is None and self.type.startswith('ip'):
|
||||
if self.type == 'ip+':
|
||||
num_tokens = 16
|
||||
num_tokens = 16
|
||||
elif self.type == 'ip':
|
||||
num_tokens = 4
|
||||
|
||||
|
||||
@@ -760,11 +760,15 @@ class ClipImageFileItemDTOMixin:
|
||||
# do a flip
|
||||
img = img.transpose(Image.FLIP_TOP_BOTTOM)
|
||||
|
||||
# image must be square. If it is not, we will resize/squish it so it is, that way we don't crop out data
|
||||
if img.width != img.height:
|
||||
# resize to the smallest dimension
|
||||
min_size = min(img.width, img.height)
|
||||
img = img.resize((min_size, min_size), Image.BICUBIC)
|
||||
if self.dataset_config.square_crop:
|
||||
# center crop to a square
|
||||
img = transforms.CenterCrop(min_size)(img)
|
||||
else:
|
||||
# image must be square. If it is not, we will resize/squish it so it is, that way we don't crop out data
|
||||
# resize to the smallest dimension
|
||||
img = img.resize((min_size, min_size), Image.BICUBIC)
|
||||
|
||||
if self.has_clip_augmentations:
|
||||
self.clip_image_tensor = self.augment_clip_image(img, transform=None)
|
||||
|
||||
Reference in New Issue
Block a user