mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-27 00:49:47 +00:00
Added single value adapter training
This commit is contained in:
@@ -1341,6 +1341,12 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
quad_count=quad_count
|
||||
)
|
||||
|
||||
if self.adapter and isinstance(self.adapter, CustomAdapter) and batch.extra_values is not None:
|
||||
self.adapter.add_extra_values(batch.extra_values.detach())
|
||||
|
||||
if self.train_config.do_cfg:
|
||||
self.adapter.add_extra_values(torch.zeros_like(batch.extra_values.detach()), is_unconditional=True)
|
||||
|
||||
|
||||
self.before_unet_predict()
|
||||
# do a prior pred if we have an unconditional image, we will swap out the giadance later
|
||||
|
||||
@@ -246,6 +246,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
output_ext=sample_config.ext,
|
||||
adapter_conditioning_scale=sample_config.adapter_conditioning_scale,
|
||||
refiner_start_at=sample_config.refiner_start_at,
|
||||
extra_values=sample_config.extra_values,
|
||||
**extra_args
|
||||
))
|
||||
|
||||
|
||||
@@ -50,6 +50,7 @@ class SampleConfig:
|
||||
self.adapter_conditioning_scale = kwargs.get('adapter_conditioning_scale', 1.0)
|
||||
self.refiner_start_at = kwargs.get('refiner_start_at',
|
||||
0.5) # step to start using refiner on sample if it exists
|
||||
self.extra_values = kwargs.get('extra_values', [])
|
||||
|
||||
|
||||
class LormModuleSettingsConfig:
|
||||
@@ -526,6 +527,7 @@ class DatasetConfig:
|
||||
|
||||
self.num_workers: int = kwargs.get('num_workers', 4)
|
||||
self.prefetch_factor: int = kwargs.get('prefetch_factor', 2)
|
||||
self.extra_values: List[float] = kwargs.get('extra_values', [])
|
||||
|
||||
|
||||
def preprocess_dataset_raw_config(raw_config: List[dict]) -> List[dict]:
|
||||
@@ -574,6 +576,7 @@ class GenerateImageConfig:
|
||||
latents: Union[torch.Tensor | None] = None, # input latent to start with,
|
||||
extra_kwargs: dict = None, # extra data to save with prompt file
|
||||
refiner_start_at: float = 0.5, # start at this percentage of a step. 0.0 to 1.0 . 1.0 is the end
|
||||
extra_values: List[float] = None, # extra values to save with prompt file
|
||||
):
|
||||
self.width: int = width
|
||||
self.height: int = height
|
||||
@@ -601,6 +604,7 @@ class GenerateImageConfig:
|
||||
self.adapter_conditioning_scale: float = adapter_conditioning_scale
|
||||
self.extra_kwargs = extra_kwargs if extra_kwargs is not None else {}
|
||||
self.refiner_start_at = refiner_start_at
|
||||
self.extra_values = extra_values if extra_values is not None else []
|
||||
|
||||
# prompt string will override any settings above
|
||||
self._process_prompt_string()
|
||||
@@ -610,7 +614,7 @@ class GenerateImageConfig:
|
||||
self.negative_prompt_2 = negative_prompt
|
||||
|
||||
if prompt_2 is None:
|
||||
self.prompt_2 = prompt
|
||||
self.prompt_2 = self.prompt
|
||||
|
||||
# parse prompt paths
|
||||
if self.output_path is None and self.output_folder is None:
|
||||
@@ -759,6 +763,12 @@ class GenerateImageConfig:
|
||||
self.adapter_conditioning_scale = float(content)
|
||||
elif flag == 'ref':
|
||||
self.refiner_start_at = float(content)
|
||||
elif flag == 'ev':
|
||||
# split by comma
|
||||
self.extra_values = [float(val) for val in content.split(',')]
|
||||
elif flag == 'extra_values':
|
||||
# split by comma
|
||||
self.extra_values = [float(val) for val in content.split(',')]
|
||||
|
||||
def post_process_embeddings(
|
||||
self,
|
||||
|
||||
@@ -9,6 +9,7 @@ from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5En
|
||||
from toolkit.models.clip_fusion import CLIPFusionModule
|
||||
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
|
||||
from toolkit.models.ilora import InstantLoRAModule
|
||||
from toolkit.models.single_value_adapter import SingleValueAdapter
|
||||
from toolkit.models.te_adapter import TEAdapter
|
||||
from toolkit.models.te_aug_adapter import TEAugAdapter
|
||||
from toolkit.models.vd_adapter import VisionDirectAdapter
|
||||
@@ -87,6 +88,7 @@ class CustomAdapter(torch.nn.Module):
|
||||
self.te_adapter: TEAdapter = None
|
||||
self.te_augmenter: TEAugAdapter = None
|
||||
self.vd_adapter: VisionDirectAdapter = None
|
||||
self.single_value_adapter: SingleValueAdapter = None
|
||||
self.conditional_embeds: Optional[torch.Tensor] = None
|
||||
self.unconditional_embeds: Optional[torch.Tensor] = None
|
||||
|
||||
@@ -173,6 +175,8 @@ class CustomAdapter(torch.nn.Module):
|
||||
self.te_augmenter = TEAugAdapter(self, self.sd_ref())
|
||||
elif self.adapter_type == 'vision_direct':
|
||||
self.vd_adapter = VisionDirectAdapter(self, self.sd_ref(), self.vision_encoder)
|
||||
elif self.adapter_type == 'single_value':
|
||||
self.single_value_adapter = SingleValueAdapter(self, self.sd_ref(), num_values=self.config.num_tokens)
|
||||
else:
|
||||
raise ValueError(f"unknown adapter type: {self.adapter_type}")
|
||||
|
||||
@@ -204,7 +208,7 @@ class CustomAdapter(torch.nn.Module):
|
||||
def setup_clip(self):
|
||||
adapter_config = self.config
|
||||
sd = self.sd_ref()
|
||||
if self.config.type == "text_encoder":
|
||||
if self.config.type == "text_encoder" or self.config.type == "single_value":
|
||||
return
|
||||
if self.config.type == 'photo_maker':
|
||||
try:
|
||||
@@ -374,6 +378,9 @@ class CustomAdapter(torch.nn.Module):
|
||||
if 'dvadapter' in state_dict:
|
||||
self.vd_adapter.load_state_dict(state_dict['dvadapter'], strict=strict)
|
||||
|
||||
if 'sv_adapter' in state_dict:
|
||||
self.single_value_adapter.load_state_dict(state_dict['sv_adapter'], strict=strict)
|
||||
|
||||
if 'vision_encoder' in state_dict and self.config.train_image_encoder:
|
||||
self.vision_encoder.load_state_dict(state_dict['vision_encoder'], strict=strict)
|
||||
|
||||
@@ -417,6 +424,9 @@ class CustomAdapter(torch.nn.Module):
|
||||
if self.config.train_image_encoder:
|
||||
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
|
||||
return state_dict
|
||||
elif self.adapter_type == 'single_value':
|
||||
state_dict["sv_adapter"] = self.single_value_adapter.state_dict()
|
||||
return state_dict
|
||||
elif self.adapter_type == 'ilora':
|
||||
if self.config.train_image_encoder:
|
||||
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
|
||||
@@ -425,6 +435,14 @@ class CustomAdapter(torch.nn.Module):
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
def add_extra_values(self, extra_values: torch.Tensor, is_unconditional=False):
|
||||
if self.adapter_type == 'single_value':
|
||||
if is_unconditional:
|
||||
self.unconditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
|
||||
else:
|
||||
self.conditional_embeds = extra_values.to(self.device, get_torch_dtype(self.sd_ref().dtype))
|
||||
|
||||
|
||||
def condition_prompt(
|
||||
self,
|
||||
prompt: Union[List[str], str],
|
||||
@@ -843,6 +861,8 @@ class CustomAdapter(torch.nn.Module):
|
||||
yield from self.te_augmenter.parameters(recurse)
|
||||
if self.config.train_image_encoder:
|
||||
yield from self.vision_encoder.parameters(recurse)
|
||||
elif self.config.type == 'single_value':
|
||||
yield from self.single_value_adapter.parameters(recurse)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
@@ -99,6 +99,7 @@ class DataLoaderBatchDTO:
|
||||
self.clip_image_embeds: Union[List[dict], None] = None
|
||||
self.clip_image_embeds_unconditional: Union[List[dict], None] = None
|
||||
self.sigmas: Union[torch.Tensor, None] = None # can be added elseware and passed along training code
|
||||
self.extra_values: Union[torch.Tensor, None] = torch.tensor([x.extra_values for x in self.file_items]) if len(self.file_items[0].extra_values) > 0 else None
|
||||
if not is_latents_cached:
|
||||
# only return a tensor if latents are not cached
|
||||
self.tensor: torch.Tensor = torch.cat([x.tensor.unsqueeze(0) for x in self.file_items])
|
||||
|
||||
@@ -266,6 +266,9 @@ class CaptionProcessingDTOMixin:
|
||||
self.caption: str = None
|
||||
self.caption_short: str = None
|
||||
|
||||
dataset_config: DatasetConfig = kwargs.get('dataset_config', None)
|
||||
self.extra_values: List[float] = dataset_config.extra_values
|
||||
|
||||
# todo allow for loading from sd-scripts style dict
|
||||
def load_caption(self: 'FileItemDTO', caption_dict: Union[dict, None]):
|
||||
if self.raw_caption is not None:
|
||||
@@ -292,11 +295,15 @@ class CaptionProcessingDTOMixin:
|
||||
prompt = prompt.replace('\n', ' ')
|
||||
prompt = prompt.replace('\r', ' ')
|
||||
|
||||
prompt = json.loads(prompt)
|
||||
if 'caption' in prompt:
|
||||
prompt = prompt['caption']
|
||||
if 'caption_short' in prompt:
|
||||
short_caption = prompt['caption_short']
|
||||
prompt_json = json.loads(prompt)
|
||||
if 'caption' in prompt_json:
|
||||
prompt = prompt_json['caption']
|
||||
if 'caption_short' in prompt_json:
|
||||
short_caption = prompt_json['caption_short']
|
||||
|
||||
if 'extra_values' in prompt_json:
|
||||
self.extra_values = prompt_json['extra_values']
|
||||
|
||||
prompt = clean_caption(prompt)
|
||||
if short_caption is not None:
|
||||
short_caption = clean_caption(short_caption)
|
||||
|
||||
402
toolkit/models/single_value_adapter.py
Normal file
402
toolkit/models/single_value_adapter.py
Normal file
@@ -0,0 +1,402 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import weakref
|
||||
from typing import Union, TYPE_CHECKING
|
||||
|
||||
from diffusers import Transformer2DModel
|
||||
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
|
||||
from toolkit.paths import REPOS_ROOT
|
||||
sys.path.append(REPOS_ROOT)
|
||||
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.stable_diffusion_model import StableDiffusion
|
||||
from toolkit.custom_adapter import CustomAdapter
|
||||
|
||||
class AttnProcessor2_0(torch.nn.Module):
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size=None,
|
||||
cross_attention_dim=None,
|
||||
):
|
||||
super().__init__()
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
hidden_states,
|
||||
encoder_hidden_states=None,
|
||||
attention_mask=None,
|
||||
temb=None,
|
||||
):
|
||||
residual = hidden_states
|
||||
|
||||
if attn.spatial_norm is not None:
|
||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
class SingleValueAdapterAttnProcessor(nn.Module):
|
||||
r"""
|
||||
Attention processor for Custom TE for PyTorch 2.0.
|
||||
Args:
|
||||
hidden_size (`int`):
|
||||
The hidden size of the attention layer.
|
||||
cross_attention_dim (`int`):
|
||||
The number of channels in the `encoder_hidden_states`.
|
||||
scale (`float`, defaults to 1.0):
|
||||
the weight scale of image prompt.
|
||||
adapter
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
|
||||
adapter_hidden_size=None, has_bias=False, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.adapter_hidden_size = adapter_hidden_size
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.scale = scale
|
||||
|
||||
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
||||
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
||||
|
||||
@property
|
||||
def is_active(self):
|
||||
return self.adapter_ref().is_active
|
||||
# return False
|
||||
|
||||
@property
|
||||
def unconditional_embeds(self):
|
||||
return self.adapter_ref().adapter_ref().unconditional_embeds
|
||||
|
||||
@property
|
||||
def conditional_embeds(self):
|
||||
return self.adapter_ref().adapter_ref().conditional_embeds
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
hidden_states,
|
||||
encoder_hidden_states=None,
|
||||
attention_mask=None,
|
||||
temb=None,
|
||||
):
|
||||
is_active = self.adapter_ref().is_active
|
||||
residual = hidden_states
|
||||
|
||||
if attn.spatial_norm is not None:
|
||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
# will be none if disabled
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# only use one TE or the other. If our adapter is active only use ours
|
||||
if self.is_active and self.conditional_embeds is not None:
|
||||
|
||||
adapter_hidden_states = self.conditional_embeds
|
||||
if adapter_hidden_states.shape[0] < batch_size:
|
||||
# doing cfg
|
||||
adapter_hidden_states = torch.cat([
|
||||
self.unconditional_embeds,
|
||||
adapter_hidden_states
|
||||
], dim=0)
|
||||
# needs to be shape (batch, 1, 1)
|
||||
if len(adapter_hidden_states.shape) == 2:
|
||||
adapter_hidden_states = adapter_hidden_states.unsqueeze(1)
|
||||
# conditional_batch_size = adapter_hidden_states.shape[0]
|
||||
# conditional_query = query
|
||||
|
||||
# for ip-adapter
|
||||
vd_key = self.to_k_adapter(adapter_hidden_states)
|
||||
vd_value = self.to_v_adapter(adapter_hidden_states)
|
||||
|
||||
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
vd_hidden_states = F.scaled_dot_product_attention(
|
||||
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
vd_hidden_states = vd_hidden_states.to(query.dtype)
|
||||
|
||||
hidden_states = hidden_states + self.scale * vd_hidden_states
|
||||
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class SingleValueAdapter(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
adapter: 'CustomAdapter',
|
||||
sd: 'StableDiffusion',
|
||||
num_values: int = 1,
|
||||
):
|
||||
super(SingleValueAdapter, self).__init__()
|
||||
is_pixart = sd.is_pixart
|
||||
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
||||
self.sd_ref: weakref.ref = weakref.ref(sd)
|
||||
self.token_size = num_values
|
||||
|
||||
# init adapter modules
|
||||
attn_procs = {}
|
||||
unet_sd = sd.unet.state_dict()
|
||||
|
||||
attn_processor_keys = []
|
||||
if is_pixart:
|
||||
transformer: Transformer2DModel = sd.unet
|
||||
for i, module in transformer.transformer_blocks.named_children():
|
||||
|
||||
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
|
||||
|
||||
# cross attention
|
||||
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
|
||||
|
||||
else:
|
||||
attn_processor_keys = list(sd.unet.attn_processors.keys())
|
||||
|
||||
for name in attn_processor_keys:
|
||||
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
|
||||
if name.startswith("mid_block"):
|
||||
hidden_size = sd.unet.config['block_out_channels'][-1]
|
||||
elif name.startswith("up_blocks"):
|
||||
block_id = int(name[len("up_blocks.")])
|
||||
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
|
||||
elif name.startswith("down_blocks"):
|
||||
block_id = int(name[len("down_blocks.")])
|
||||
hidden_size = sd.unet.config['block_out_channels'][block_id]
|
||||
elif name.startswith("transformer"):
|
||||
hidden_size = sd.unet.config['cross_attention_dim']
|
||||
else:
|
||||
# they didnt have this, but would lead to undefined below
|
||||
raise ValueError(f"unknown attn processor name: {name}")
|
||||
if cross_attention_dim is None:
|
||||
attn_procs[name] = AttnProcessor2_0()
|
||||
else:
|
||||
layer_name = name.split(".processor")[0]
|
||||
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
|
||||
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
|
||||
# if is_pixart:
|
||||
# to_k_bias = unet_sd[layer_name + ".to_k.bias"]
|
||||
# to_v_bias = unet_sd[layer_name + ".to_v.bias"]
|
||||
# else:
|
||||
# to_k_bias = None
|
||||
# to_v_bias = None
|
||||
|
||||
# add zero padding to the adapter
|
||||
if to_k_adapter.shape[1] < self.token_size:
|
||||
to_k_adapter = torch.cat([
|
||||
to_k_adapter,
|
||||
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
|
||||
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
|
||||
],
|
||||
dim=1
|
||||
)
|
||||
to_v_adapter = torch.cat([
|
||||
to_v_adapter,
|
||||
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
|
||||
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
|
||||
],
|
||||
dim=1
|
||||
)
|
||||
# if is_pixart:
|
||||
# to_k_bias = torch.cat([
|
||||
# to_k_bias,
|
||||
# torch.zeros(self.token_size - to_k_adapter.shape[1]).to(
|
||||
# to_k_adapter.device, dtype=to_k_adapter.dtype)
|
||||
# ],
|
||||
# dim=0
|
||||
# )
|
||||
# to_v_bias = torch.cat([
|
||||
# to_v_bias,
|
||||
# torch.zeros(self.token_size - to_v_adapter.shape[1]).to(
|
||||
# to_k_adapter.device, dtype=to_k_adapter.dtype)
|
||||
# ],
|
||||
# dim=0
|
||||
# )
|
||||
elif to_k_adapter.shape[1] > self.token_size:
|
||||
to_k_adapter = to_k_adapter[:, :self.token_size]
|
||||
to_v_adapter = to_v_adapter[:, :self.token_size]
|
||||
# if is_pixart:
|
||||
# to_k_bias = to_k_bias[:self.token_size]
|
||||
# to_v_bias = to_v_bias[:self.token_size]
|
||||
else:
|
||||
to_k_adapter = to_k_adapter
|
||||
to_v_adapter = to_v_adapter
|
||||
# if is_pixart:
|
||||
# to_k_bias = to_k_bias
|
||||
# to_v_bias = to_v_bias
|
||||
|
||||
weights = {
|
||||
"to_k_adapter.weight": to_k_adapter * 0.01,
|
||||
"to_v_adapter.weight": to_v_adapter * 0.01,
|
||||
}
|
||||
# if is_pixart:
|
||||
# weights["to_k_adapter.bias"] = to_k_bias
|
||||
# weights["to_v_adapter.bias"] = to_v_bias
|
||||
|
||||
attn_procs[name] = SingleValueAdapterAttnProcessor(
|
||||
hidden_size=hidden_size,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
scale=1.0,
|
||||
adapter=self,
|
||||
adapter_hidden_size=self.token_size,
|
||||
has_bias=False,
|
||||
)
|
||||
attn_procs[name].load_state_dict(weights)
|
||||
if self.sd_ref().is_pixart:
|
||||
# we have to set them ourselves
|
||||
transformer: Transformer2DModel = sd.unet
|
||||
for i, module in transformer.transformer_blocks.named_children():
|
||||
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
|
||||
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
|
||||
self.adapter_modules = torch.nn.ModuleList([
|
||||
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
|
||||
] + [
|
||||
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
|
||||
])
|
||||
else:
|
||||
sd.unet.set_attn_processor(attn_procs)
|
||||
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
||||
|
||||
# make a getter to see if is active
|
||||
@property
|
||||
def is_active(self):
|
||||
return self.adapter_ref().is_active
|
||||
|
||||
def forward(self, input):
|
||||
return input
|
||||
@@ -685,6 +685,14 @@ class StableDiffusion:
|
||||
is_generating_samples=True,
|
||||
)
|
||||
|
||||
if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and len(gen_config.extra_values) > 0:
|
||||
extra_values = torch.tensor([gen_config.extra_values], device=self.device_torch, dtype=self.torch_dtype)
|
||||
# apply extra values to the embeddings
|
||||
self.adapter.add_extra_values(extra_values, is_unconditional=False)
|
||||
self.adapter.add_extra_values(torch.zeros_like(extra_values), is_unconditional=True)
|
||||
pass # todo remove, for debugging
|
||||
|
||||
|
||||
if self.refiner_unet is not None and gen_config.refiner_start_at < 1.0:
|
||||
# if we have a refiner loaded, set the denoising end at the refiner start
|
||||
extra['denoising_end'] = gen_config.refiner_start_at
|
||||
|
||||
Reference in New Issue
Block a user