Add new version of DFE. Kitchen sink

This commit is contained in:
Jaret Burkett
2025-01-31 11:42:27 -07:00
parent 34a1c6947a
commit 15a57bc89f
4 changed files with 203 additions and 2 deletions

View File

@@ -387,7 +387,7 @@ class SDTrainer(BaseSDTrainProcess):
pred_features = self.dfe(torch.cat([noise_pred.float(), noise.float()], dim=1))
additional_loss += torch.nn.functional.mse_loss(pred_features, target_features, reduction="mean") * \
self.train_config.diffusion_feature_extractor_weight
else:
elif self.dfe.version == 2:
# version 2
# do diffusion feature extraction on target
with torch.no_grad():
@@ -402,6 +402,17 @@ class SDTrainer(BaseSDTrainProcess):
dfe_loss += torch.nn.functional.mse_loss(pred_feature_list[i], target_feature_list[i], reduction="mean")
additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight * 100.0
elif self.dfe.version == 3:
dfe_loss = self.dfe(
noise_pred=noise_pred,
noisy_latents=noisy_latents,
timesteps=timesteps,
batch=batch,
scheduler=self.sd.noise_scheduler
)
additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight
else:
raise ValueError(f"Unknown diffusion feature extractor version {self.dfe.version}")
if target is None:

View File

@@ -1636,7 +1636,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
if latest_save_path is not None:
state_dict = load_file(latest_save_path)
self.decorator.load_state_dict(state_dict)
self.load_training_state_from_metadata(path)
self.load_training_state_from_metadata(latest_save_path)
params.append({
'params': list(self.decorator.parameters()),

View File

@@ -3,6 +3,12 @@ import os
from torch import nn
from safetensors.torch import load_file
import torch.nn.functional as F
from diffusers import AutoencoderTiny
from transformers import SiglipImageProcessor, SiglipVisionModel
import lpips
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
class ResBlock(nn.Module):
@@ -147,7 +153,188 @@ class DiffusionFeatureExtractor(nn.Module):
return x
class DiffusionFeatureExtractor3(nn.Module):
def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16):
super().__init__()
self.version = 3
vae = AutoencoderTiny.from_pretrained(
"madebyollin/taef1", torch_dtype=torch.bfloat16)
self.vae = vae
image_encoder_path = "google/siglip-so400m-patch14-384"
try:
self.image_processor = SiglipImageProcessor.from_pretrained(
image_encoder_path)
except EnvironmentError:
self.image_processor = SiglipImageProcessor()
self.vision_encoder = SiglipVisionModel.from_pretrained(
image_encoder_path,
ignore_mismatched_sizes=True
).to(device, dtype=dtype)
self.lpips_model = lpips_model = lpips.LPIPS(net='vgg')
self.lpips_model = lpips_model.to(device, dtype=torch.float32)
self.losses = {}
self.log_every = 100
self.step = 0
def get_siglip_features(self, tensors_0_1):
dtype = torch.bfloat16
device = self.vae.device
# resize to 384x384
images = F.interpolate(tensors_0_1, size=(384, 384),
mode='bicubic', align_corners=False)
mean = torch.tensor(self.image_processor.image_mean).to(
device, dtype=dtype
).detach()
std = torch.tensor(self.image_processor.image_std).to(
device, dtype=dtype
).detach()
# tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (
images - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
id_embeds = self.vision_encoder(
clip_image,
output_hidden_states=True,
)
last_hidden_state = id_embeds['last_hidden_state']
return last_hidden_state
def get_lpips_features(self, tensors_0_1):
device = self.vae.device
tensors_n1p1 = (tensors_0_1 * 2) - 1
def get_lpips_features(img): # -1 to 1
in0_input = self.lpips_model.scaling_layer(img)
outs0 = self.lpips_model.net.forward(in0_input)
feats0 = {}
feats_list = []
for kk in range(self.lpips_model.L):
feats0[kk] = lpips.normalize_tensor(outs0[kk])
feats_list.append(feats0[kk])
# 512 in
# vgg
# 0 torch.Size([1, 64, 512, 512])
# 1 torch.Size([1, 128, 256, 256])
# 2 torch.Size([1, 256, 128, 128])
# 3 torch.Size([1, 512, 64, 64])
# 4 torch.Size([1, 512, 32, 32])
return feats_list
# do lpips
lpips_feat_list = [x.detach() for x in get_lpips_features(
tensors_n1p1.to(device, dtype=torch.float32))]
return lpips_feat_list
def forward(
self,
noise_pred,
noisy_latents,
timesteps,
batch: DataLoaderBatchDTO,
scheduler: CustomFlowMatchEulerDiscreteScheduler,
lpips_weight=20.0,
clip_weight=0.1,
pixel_weight=1.0
):
dtype = torch.bfloat16
device = self.vae.device
# first we step the scheduler from current timestep to the very end for a full denoise
bs = noise_pred.shape[0]
noise_pred_chunks = torch.chunk(noise_pred, bs)
timestep_chunks = torch.chunk(timesteps, bs)
stepped_chunks = []
for idx in range(bs):
model_output = noise_pred_chunks[idx]
timestep = timestep_chunks[idx]
scheduler._step_index = None
scheduler._init_step_index(timestep)
sample = noisy_latents.to(torch.float32)
sigma = scheduler.sigmas[scheduler.step_index]
sigma_next = scheduler.sigmas[-1] # use last sigma for final step
prev_sample = sample + (sigma_next - sigma) * model_output
stepped_chunks.append(prev_sample)
stepped_latents = torch.cat(stepped_chunks, dim=0)
latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype)
latents = (
latents / self.vae.config['scaling_factor']) + self.vae.config['shift_factor']
tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1
pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1
pred_clip_output = self.get_siglip_features(pred_images)
lpips_feat_list_pred = self.get_lpips_features(pred_images.float())
with torch.no_grad():
target_img = batch.tensor.to(device, dtype=dtype)
# go from -1 to 1 to 0 to 1
target_img = (target_img + 1) / 2
target_clip_output = self.get_siglip_features(target_img).detach()
lpips_feat_list_target = self.get_lpips_features(target_img.float())
clip_loss = torch.nn.functional.mse_loss(
pred_clip_output.float(), target_clip_output.float()
) * clip_weight
if 'clip_loss' not in self.losses:
self.losses['clip_loss'] = clip_loss.item()
else:
self.losses['clip_loss'] += clip_loss.item()
total_loss = clip_loss
lpips_loss = 0
for idx, lpips_feat in enumerate(lpips_feat_list_pred):
lpips_loss += torch.nn.functional.mse_loss(
lpips_feat.float(), lpips_feat_list_target[idx].float()
) * lpips_weight
if 'lpips_loss' not in self.losses:
self.losses['lpips_loss'] = lpips_loss.item()
else:
self.losses['lpips_loss'] += lpips_loss.item()
total_loss += lpips_loss
mse_loss = torch.nn.functional.mse_loss(
stepped_latents.float(), batch.latents.float()
) * pixel_weight
if 'pixel_loss' not in self.losses:
self.losses['pixel_loss'] = mse_loss.item()
else:
self.losses['pixel_loss'] += mse_loss.item()
if self.step % self.log_every == 0 and self.step > 0:
print(f"DFE losses:")
for key in self.losses:
self.losses[key] /= self.log_every
# print in 2.000e-01 format
print(f" - {key}: {self.losses[key]:.3e}")
self.losses[key] = 0.0
total_loss += mse_loss
self.step += 1
return total_loss
def load_dfe(model_path) -> DiffusionFeatureExtractor:
if model_path == "v3":
dfe = DiffusionFeatureExtractor3()
dfe.eval()
return dfe
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found: {model_path}")
# if it ende with safetensors

View File

@@ -109,6 +109,9 @@ class BlankNetwork:
def __exit__(self, exc_type, exc_val, exc_tb):
self.is_active = False
def train(self):
pass
def flush():