mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Bug fixes. Added IP adapter training for Pixart
This commit is contained in:
@@ -346,8 +346,9 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
print("Prior loss is nan")
|
||||
prior_loss = None
|
||||
else:
|
||||
# prior_loss = prior_loss.mean([1, 2, 3])
|
||||
loss = loss + prior_loss
|
||||
prior_loss = prior_loss.mean([1, 2, 3])
|
||||
# loss = loss + prior_loss
|
||||
# loss = loss + prior_loss
|
||||
# loss = loss + prior_loss
|
||||
loss = loss.mean([1, 2, 3])
|
||||
if prior_loss is not None:
|
||||
@@ -731,6 +732,15 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
# self.network.multiplier = 0.0
|
||||
self.sd.unet.eval()
|
||||
|
||||
if self.adapter is not None and isinstance(self.adapter, IPAdapter):
|
||||
# we need to remove the image embeds from the prompt
|
||||
embeds_to_use: PromptEmbeds = embeds_to_use.clone().detach()
|
||||
end_pos = embeds_to_use.text_embeds.shape[1] - self.adapter_config.num_tokens
|
||||
embeds_to_use.text_embeds = embeds_to_use.text_embeds[:, :end_pos, :]
|
||||
if unconditional_embeds is not None:
|
||||
unconditional_embeds = unconditional_embeds.clone().detach()
|
||||
unconditional_embeds.text_embeds = unconditional_embeds.text_embeds[:, :end_pos]
|
||||
|
||||
if unconditional_embeds is not None:
|
||||
unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach()
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@ import torch
|
||||
import sys
|
||||
|
||||
from PIL import Image
|
||||
from diffusers import Transformer2DModel
|
||||
from torch.nn import Parameter
|
||||
from torch.nn.modules.module import T
|
||||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
||||
@@ -79,6 +80,10 @@ class CustomIPAttentionProcessor(IPAttnProcessor2_0):
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if is_active:
|
||||
# since we are removing tokens, we need to adjust the sequence length
|
||||
sequence_length = sequence_length - self.num_tokens
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
@@ -90,6 +95,9 @@ class CustomIPAttentionProcessor(IPAttnProcessor2_0):
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
|
||||
# will be none if disabled
|
||||
if not is_active:
|
||||
ip_hidden_states = None
|
||||
@@ -120,9 +128,13 @@ class CustomIPAttentionProcessor(IPAttnProcessor2_0):
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
try:
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
raise e
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
@@ -235,7 +247,7 @@ class IPAdapter(torch.nn.Module):
|
||||
print(f"could not load image processor from {adapter_config.image_encoder_path}")
|
||||
self.clip_image_processor = ConvNextImageProcessor(
|
||||
size=512,
|
||||
image_mean=[0.485,0.456,0.406],
|
||||
image_mean=[0.485, 0.456, 0.406],
|
||||
image_std=[0.229, 0.224, 0.225],
|
||||
)
|
||||
self.image_encoder = ConvNextV2ForImageClassification.from_pretrained(
|
||||
@@ -299,6 +311,7 @@ class IPAdapter(torch.nn.Module):
|
||||
raise ValueError(f"unknown image processor size: {self.clip_image_processor.size}")
|
||||
self.current_scale = 1.0
|
||||
self.is_active = True
|
||||
is_pixart = sd.is_pixart
|
||||
if adapter_config.type == 'ip':
|
||||
# ip-adapter
|
||||
image_proj_model = ImageProjModel(
|
||||
@@ -310,14 +323,22 @@ class IPAdapter(torch.nn.Module):
|
||||
heads = 12 if not sd.is_xl else 20
|
||||
dim = sd.unet.config['cross_attention_dim'] if not sd.is_xl else 1280
|
||||
embedding_dim = self.image_encoder.config.hidden_size if not self.config.image_encoder_arch == "convnext" else \
|
||||
self.image_encoder.config.hidden_sizes[-1]
|
||||
self.image_encoder.config.hidden_sizes[-1]
|
||||
|
||||
image_encoder_state_dict = self.image_encoder.state_dict()
|
||||
# max_seq_len = CLIP tokens + CLS token
|
||||
max_seq_len = 257
|
||||
if "vision_model.embeddings.position_embedding.weight" in image_encoder_state_dict:
|
||||
# clip
|
||||
max_seq_len = int(image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
|
||||
max_seq_len = int(
|
||||
image_encoder_state_dict["vision_model.embeddings.position_embedding.weight"].shape[0])
|
||||
|
||||
output_dim = sd.unet.config['cross_attention_dim']
|
||||
|
||||
if is_pixart:
|
||||
heads = 20
|
||||
dim = 4096
|
||||
output_dim = 4096
|
||||
|
||||
# ip-adapter-plus
|
||||
image_proj_model = Resampler(
|
||||
@@ -328,7 +349,7 @@ class IPAdapter(torch.nn.Module):
|
||||
num_queries=self.config.num_tokens if self.config.num_tokens > 0 else max_seq_len,
|
||||
embedding_dim=embedding_dim,
|
||||
max_seq_len=max_seq_len,
|
||||
output_dim=sd.unet.config['cross_attention_dim'],
|
||||
output_dim=output_dim,
|
||||
ff_mult=4
|
||||
)
|
||||
elif adapter_config.type == 'ipz':
|
||||
@@ -373,8 +394,21 @@ class IPAdapter(torch.nn.Module):
|
||||
# init adapter modules
|
||||
attn_procs = {}
|
||||
unet_sd = sd.unet.state_dict()
|
||||
for name in sd.unet.attn_processors.keys():
|
||||
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
|
||||
attn_processor_keys = []
|
||||
if is_pixart:
|
||||
transformer: Transformer2DModel = sd.unet
|
||||
for i, module in transformer.transformer_blocks.named_children():
|
||||
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
|
||||
|
||||
# cross attention
|
||||
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
|
||||
|
||||
else:
|
||||
attn_processor_keys = list(sd.unet.attn_processors.keys())
|
||||
|
||||
for name in attn_processor_keys:
|
||||
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else \
|
||||
sd.unet.config['cross_attention_dim']
|
||||
if name.startswith("mid_block"):
|
||||
hidden_size = sd.unet.config['block_out_channels'][-1]
|
||||
elif name.startswith("up_blocks"):
|
||||
@@ -383,6 +417,8 @@ class IPAdapter(torch.nn.Module):
|
||||
elif name.startswith("down_blocks"):
|
||||
block_id = int(name[len("down_blocks.")])
|
||||
hidden_size = sd.unet.config['block_out_channels'][block_id]
|
||||
elif name.startswith("transformer"):
|
||||
hidden_size = sd.unet.config['cross_attention_dim']
|
||||
else:
|
||||
# they didnt have this, but would lead to undefined below
|
||||
raise ValueError(f"unknown attn processor name: {name}")
|
||||
@@ -402,14 +438,35 @@ class IPAdapter(torch.nn.Module):
|
||||
num_tokens=self.config.num_tokens,
|
||||
adapter=self
|
||||
)
|
||||
if self.sd_ref().is_pixart:
|
||||
# pixart is much more sensitive
|
||||
weights = {
|
||||
"to_k_ip.weight": weights["to_k_ip.weight"] * 0.01,
|
||||
"to_v_ip.weight": weights["to_v_ip.weight"] * 0.01,
|
||||
}
|
||||
|
||||
attn_procs[name].load_state_dict(weights)
|
||||
sd.unet.set_attn_processor(attn_procs)
|
||||
adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
||||
if self.sd_ref().is_pixart:
|
||||
# we have to set them ourselves
|
||||
transformer: Transformer2DModel = sd.unet
|
||||
for i, module in transformer.transformer_blocks.named_children():
|
||||
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
|
||||
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
|
||||
self.adapter_modules = torch.nn.ModuleList(
|
||||
[
|
||||
transformer.transformer_blocks[i].attn1.processor for i in
|
||||
range(len(transformer.transformer_blocks))
|
||||
] + [
|
||||
transformer.transformer_blocks[i].attn2.processor for i in
|
||||
range(len(transformer.transformer_blocks))
|
||||
])
|
||||
else:
|
||||
sd.unet.set_attn_processor(attn_procs)
|
||||
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
||||
|
||||
sd.adapter = self
|
||||
self.unet_ref: weakref.ref = weakref.ref(sd.unet)
|
||||
self.image_proj_model = image_proj_model
|
||||
self.adapter_modules = adapter_modules
|
||||
# load the weights if we have some
|
||||
if self.config.name_or_path:
|
||||
loaded_state_dict = load_ip_adapter_model(
|
||||
@@ -473,9 +530,10 @@ class IPAdapter(torch.nn.Module):
|
||||
|
||||
def set_scale(self, scale):
|
||||
self.current_scale = scale
|
||||
for attn_processor in self.sd_ref().unet.attn_processors.values():
|
||||
if isinstance(attn_processor, CustomIPAttentionProcessor):
|
||||
attn_processor.scale = scale
|
||||
if not self.sd_ref().is_pixart:
|
||||
for attn_processor in self.sd_ref().unet.attn_processors.values():
|
||||
if isinstance(attn_processor, CustomIPAttentionProcessor):
|
||||
attn_processor.scale = scale
|
||||
|
||||
# @torch.no_grad()
|
||||
# def get_clip_image_embeds_from_pil(self, pil_image: Union[Image.Image, List[Image.Image]],
|
||||
@@ -554,7 +612,7 @@ class IPAdapter(torch.nn.Module):
|
||||
if self.clip_noise_zero:
|
||||
tensors_0_1 = torch.rand_like(tensors_0_1).detach()
|
||||
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
|
||||
dtype=get_torch_dtype(self.sd_ref().dtype))
|
||||
dtype=get_torch_dtype(self.sd_ref().dtype))
|
||||
tensors_0_1 = tensors_0_1 * noise_scale
|
||||
else:
|
||||
tensors_0_1 = torch.zeros_like(tensors_0_1).detach()
|
||||
@@ -675,7 +733,6 @@ class IPAdapter(torch.nn.Module):
|
||||
embeddings.text_embeds = torch.cat([embeddings.text_embeds, image_prompt_embeds], dim=1)
|
||||
return embeddings
|
||||
|
||||
|
||||
def train(self: T, mode: bool = True) -> T:
|
||||
if self.config.train_image_encoder:
|
||||
self.image_encoder.train(mode)
|
||||
@@ -721,18 +778,22 @@ class IPAdapter(torch.nn.Module):
|
||||
raise ValueError(f"unknown shape: {current_shape}")
|
||||
except RuntimeError as e:
|
||||
print(e)
|
||||
print(f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
|
||||
print(
|
||||
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
|
||||
|
||||
if len(current_shape) == 1:
|
||||
current_img_proj_state_dict[key][:current_shape[0]] = value[:current_shape[0]]
|
||||
elif len(current_shape) == 2:
|
||||
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1]] = value[:current_shape[0], :current_shape[1]]
|
||||
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1]] = value[
|
||||
:current_shape[0],
|
||||
:current_shape[1]]
|
||||
elif len(current_shape) == 3:
|
||||
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
|
||||
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1],
|
||||
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
|
||||
elif len(current_shape) == 4:
|
||||
current_img_proj_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2],
|
||||
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2],
|
||||
:current_shape[3]]
|
||||
:current_shape[3]]
|
||||
else:
|
||||
raise ValueError(f"unknown shape: {current_shape}")
|
||||
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
|
||||
@@ -763,16 +824,24 @@ class IPAdapter(torch.nn.Module):
|
||||
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
|
||||
except RuntimeError as e:
|
||||
print(e)
|
||||
print(f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
|
||||
print(
|
||||
f"could not merge in {key}: {list(current_shape)} <<< {list(new_shape)}. Trying other way")
|
||||
|
||||
if(len(current_shape) == 1):
|
||||
if (len(current_shape) == 1):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0]] = value[:current_shape[0]]
|
||||
elif(len(current_shape) == 2):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1]] = value[:current_shape[0], :current_shape[1]]
|
||||
elif(len(current_shape) == 3):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
|
||||
elif(len(current_shape) == 4):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2], :current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2], :current_shape[3]]
|
||||
elif (len(current_shape) == 2):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1]] = value[
|
||||
:current_shape[
|
||||
0],
|
||||
:current_shape[
|
||||
1]]
|
||||
elif (len(current_shape) == 3):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1],
|
||||
:current_shape[2]] = value[:current_shape[0], :current_shape[1], :current_shape[2]]
|
||||
elif (len(current_shape) == 4):
|
||||
current_ip_adapter_state_dict[key][:current_shape[0], :current_shape[1], :current_shape[2],
|
||||
:current_shape[3]] = value[:current_shape[0], :current_shape[1], :current_shape[2],
|
||||
:current_shape[3]]
|
||||
else:
|
||||
raise ValueError(f"unknown shape: {current_shape}")
|
||||
print(f"Force merged in {key}: {list(current_shape)} <<< {list(new_shape)}")
|
||||
@@ -781,7 +850,6 @@ class IPAdapter(torch.nn.Module):
|
||||
current_ip_adapter_state_dict[key] = value
|
||||
self.adapter_modules.load_state_dict(current_ip_adapter_state_dict)
|
||||
|
||||
|
||||
def load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True):
|
||||
strict = False
|
||||
if 'ip_adapter' in state_dict:
|
||||
@@ -801,7 +869,6 @@ class IPAdapter(torch.nn.Module):
|
||||
# we are loading pure clip weights.
|
||||
self.image_encoder.load_state_dict(state_dict, strict=strict)
|
||||
|
||||
|
||||
def enable_gradient_checkpointing(self):
|
||||
if hasattr(self.image_encoder, "enable_gradient_checkpointing"):
|
||||
self.image_encoder.enable_gradient_checkpointing()
|
||||
|
||||
@@ -6,16 +6,103 @@ import torch.nn.functional as F
|
||||
import weakref
|
||||
from typing import Union, TYPE_CHECKING
|
||||
|
||||
from diffusers import Transformer2DModel
|
||||
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
|
||||
from toolkit.paths import REPOS_ROOT
|
||||
sys.path.append(REPOS_ROOT)
|
||||
|
||||
from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.stable_diffusion_model import StableDiffusion
|
||||
from toolkit.custom_adapter import CustomAdapter
|
||||
|
||||
class AttnProcessor2_0(torch.nn.Module):
|
||||
r"""
|
||||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size=None,
|
||||
cross_attention_dim=None,
|
||||
):
|
||||
super().__init__()
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn,
|
||||
hidden_states,
|
||||
encoder_hidden_states=None,
|
||||
attention_mask=None,
|
||||
temb=None,
|
||||
):
|
||||
residual = hidden_states
|
||||
|
||||
if attn.spatial_norm is not None:
|
||||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||||
|
||||
input_ndim = hidden_states.ndim
|
||||
|
||||
if input_ndim == 4:
|
||||
batch_size, channel, height, width = hidden_states.shape
|
||||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
||||
|
||||
batch_size, sequence_length, _ = (
|
||||
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
||||
)
|
||||
|
||||
if attention_mask is not None:
|
||||
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
||||
# scaled_dot_product_attention expects attention_mask shape to be
|
||||
# (batch, heads, source_length, target_length)
|
||||
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
||||
|
||||
if attn.group_norm is not None:
|
||||
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
||||
|
||||
query = attn.to_q(hidden_states)
|
||||
|
||||
if encoder_hidden_states is None:
|
||||
encoder_hidden_states = hidden_states
|
||||
elif attn.norm_cross:
|
||||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||||
|
||||
key = attn.to_k(encoder_hidden_states)
|
||||
value = attn.to_v(encoder_hidden_states)
|
||||
|
||||
inner_dim = key.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||||
|
||||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||||
hidden_states = F.scaled_dot_product_attention(
|
||||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||||
)
|
||||
|
||||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
|
||||
# linear proj
|
||||
hidden_states = attn.to_out[0](hidden_states)
|
||||
# dropout
|
||||
hidden_states = attn.to_out[1](hidden_states)
|
||||
|
||||
if input_ndim == 4:
|
||||
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
||||
|
||||
if attn.residual_connection:
|
||||
hidden_states = hidden_states + residual
|
||||
|
||||
hidden_states = hidden_states / attn.rescale_output_factor
|
||||
|
||||
return hidden_states
|
||||
|
||||
class VisionDirectAdapterAttnProcessor(nn.Module):
|
||||
r"""
|
||||
@@ -31,7 +118,7 @@ class VisionDirectAdapterAttnProcessor(nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
|
||||
adapter_hidden_size=None):
|
||||
adapter_hidden_size=None, has_bias=False, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
@@ -44,12 +131,13 @@ class VisionDirectAdapterAttnProcessor(nn.Module):
|
||||
self.cross_attention_dim = cross_attention_dim
|
||||
self.scale = scale
|
||||
|
||||
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
|
||||
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
|
||||
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
||||
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=has_bias)
|
||||
|
||||
@property
|
||||
def is_active(self):
|
||||
return self.adapter_ref().is_active
|
||||
# return False
|
||||
|
||||
@property
|
||||
def unconditional_embeds(self):
|
||||
@@ -175,6 +263,7 @@ class VisionDirectAdapter(torch.nn.Module):
|
||||
vision_model: Union[CLIPVisionModelWithProjection],
|
||||
):
|
||||
super(VisionDirectAdapter, self).__init__()
|
||||
is_pixart = sd.is_pixart
|
||||
self.adapter_ref: weakref.ref = weakref.ref(adapter)
|
||||
self.sd_ref: weakref.ref = weakref.ref(sd)
|
||||
self.vision_model_ref: weakref.ref = weakref.ref(vision_model)
|
||||
@@ -184,8 +273,22 @@ class VisionDirectAdapter(torch.nn.Module):
|
||||
# init adapter modules
|
||||
attn_procs = {}
|
||||
unet_sd = sd.unet.state_dict()
|
||||
for name in sd.unet.attn_processors.keys():
|
||||
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
|
||||
|
||||
attn_processor_keys = []
|
||||
if is_pixart:
|
||||
transformer: Transformer2DModel = sd.unet
|
||||
for i, module in transformer.transformer_blocks.named_children():
|
||||
|
||||
attn_processor_keys.append(f"transformer_blocks.{i}.attn1")
|
||||
|
||||
# cross attention
|
||||
attn_processor_keys.append(f"transformer_blocks.{i}.attn2")
|
||||
|
||||
else:
|
||||
attn_processor_keys = list(sd.unet.attn_processors.keys())
|
||||
|
||||
for name in attn_processor_keys:
|
||||
cross_attention_dim = None if name.endswith("attn1.processor") or name.endswith("attn.1") else sd.unet.config['cross_attention_dim']
|
||||
if name.startswith("mid_block"):
|
||||
hidden_size = sd.unet.config['block_out_channels'][-1]
|
||||
elif name.startswith("up_blocks"):
|
||||
@@ -194,6 +297,8 @@ class VisionDirectAdapter(torch.nn.Module):
|
||||
elif name.startswith("down_blocks"):
|
||||
block_id = int(name[len("down_blocks.")])
|
||||
hidden_size = sd.unet.config['block_out_channels'][block_id]
|
||||
elif name.startswith("transformer"):
|
||||
hidden_size = sd.unet.config['cross_attention_dim']
|
||||
else:
|
||||
# they didnt have this, but would lead to undefined below
|
||||
raise ValueError(f"unknown attn processor name: {name}")
|
||||
@@ -203,6 +308,12 @@ class VisionDirectAdapter(torch.nn.Module):
|
||||
layer_name = name.split(".processor")[0]
|
||||
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
|
||||
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
|
||||
# if is_pixart:
|
||||
# to_k_bias = unet_sd[layer_name + ".to_k.bias"]
|
||||
# to_v_bias = unet_sd[layer_name + ".to_v.bias"]
|
||||
# else:
|
||||
# to_k_bias = None
|
||||
# to_v_bias = None
|
||||
|
||||
# add zero padding to the adapter
|
||||
if to_k_adapter.shape[1] < self.token_size:
|
||||
@@ -220,29 +331,65 @@ class VisionDirectAdapter(torch.nn.Module):
|
||||
],
|
||||
dim=1
|
||||
)
|
||||
# if is_pixart:
|
||||
# to_k_bias = torch.cat([
|
||||
# to_k_bias,
|
||||
# torch.zeros(self.token_size - to_k_adapter.shape[1]).to(
|
||||
# to_k_adapter.device, dtype=to_k_adapter.dtype)
|
||||
# ],
|
||||
# dim=0
|
||||
# )
|
||||
# to_v_bias = torch.cat([
|
||||
# to_v_bias,
|
||||
# torch.zeros(self.token_size - to_v_adapter.shape[1]).to(
|
||||
# to_k_adapter.device, dtype=to_k_adapter.dtype)
|
||||
# ],
|
||||
# dim=0
|
||||
# )
|
||||
elif to_k_adapter.shape[1] > self.token_size:
|
||||
to_k_adapter = to_k_adapter[:, :self.token_size]
|
||||
to_v_adapter = to_v_adapter[:, :self.token_size]
|
||||
# if is_pixart:
|
||||
# to_k_bias = to_k_bias[:self.token_size]
|
||||
# to_v_bias = to_v_bias[:self.token_size]
|
||||
else:
|
||||
to_k_adapter = to_k_adapter
|
||||
to_v_adapter = to_v_adapter
|
||||
# if is_pixart:
|
||||
# to_k_bias = to_k_bias
|
||||
# to_v_bias = to_v_bias
|
||||
|
||||
# todo resize to the TE hidden size
|
||||
weights = {
|
||||
"to_k_adapter.weight": to_k_adapter,
|
||||
"to_v_adapter.weight": to_v_adapter,
|
||||
"to_k_adapter.weight": to_k_adapter * 0.01,
|
||||
"to_v_adapter.weight": to_v_adapter * 0.01,
|
||||
}
|
||||
# if is_pixart:
|
||||
# weights["to_k_adapter.bias"] = to_k_bias
|
||||
# weights["to_v_adapter.bias"] = to_v_bias
|
||||
|
||||
attn_procs[name] = VisionDirectAdapterAttnProcessor(
|
||||
hidden_size=hidden_size,
|
||||
cross_attention_dim=cross_attention_dim,
|
||||
scale=1.0,
|
||||
adapter=self,
|
||||
adapter_hidden_size=self.token_size
|
||||
adapter_hidden_size=self.token_size,
|
||||
has_bias=False,
|
||||
)
|
||||
attn_procs[name].load_state_dict(weights)
|
||||
sd.unet.set_attn_processor(attn_procs)
|
||||
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
||||
if self.sd_ref().is_pixart:
|
||||
# we have to set them ourselves
|
||||
transformer: Transformer2DModel = sd.unet
|
||||
for i, module in transformer.transformer_blocks.named_children():
|
||||
module.attn1.processor = attn_procs[f"transformer_blocks.{i}.attn1"]
|
||||
module.attn2.processor = attn_procs[f"transformer_blocks.{i}.attn2"]
|
||||
self.adapter_modules = torch.nn.ModuleList([
|
||||
transformer.transformer_blocks[i].attn1.processor for i in range(len(transformer.transformer_blocks))
|
||||
] + [
|
||||
transformer.transformer_blocks[i].attn2.processor for i in range(len(transformer.transformer_blocks))
|
||||
])
|
||||
else:
|
||||
sd.unet.set_attn_processor(attn_procs)
|
||||
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
||||
|
||||
# make a getter to see if is active
|
||||
@property
|
||||
|
||||
@@ -1567,10 +1567,15 @@ class StableDiffusion:
|
||||
named_params = self.named_parameters(vae=False, unet=unet, text_encoder=False, state_dict_keys=True)
|
||||
unet_lr = unet_lr if unet_lr is not None else default_lr
|
||||
params = []
|
||||
for key, diffusers_key in ldm_diffusers_keymap.items():
|
||||
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
|
||||
if named_params[diffusers_key].requires_grad:
|
||||
params.append(named_params[diffusers_key])
|
||||
if self.is_pixart:
|
||||
for param in named_params.values():
|
||||
if param.requires_grad:
|
||||
params.append(param)
|
||||
else:
|
||||
for key, diffusers_key in ldm_diffusers_keymap.items():
|
||||
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
|
||||
if named_params[diffusers_key].requires_grad:
|
||||
params.append(named_params[diffusers_key])
|
||||
param_data = {"params": params, "lr": unet_lr}
|
||||
trainable_parameters.append(param_data)
|
||||
print(f"Found {len(params)} trainable parameter in unet")
|
||||
|
||||
Reference in New Issue
Block a user