Make a CFG version of flux pipeline

This commit is contained in:
Jaret Burkett
2024-08-05 16:35:53 -06:00
parent 99f24cfb0c
commit 272c8608c2
4 changed files with 273 additions and 24 deletions

View File

@@ -78,8 +78,12 @@ for key, value in state_dict.items():
new_key = new_key.replace('lora_up', 'lora_B')
new_key = new_key.replace('_lora', '.lora')
new_key = new_key.replace('attn_', 'attn.')
new_key = new_key.replace('ff_', 'ff.')
new_key = new_key.replace('context_net_', 'context.net.')
new_key = new_key.replace('0_proj', '0.proj')
new_key = new_key.replace('norm_linear', 'norm.linear')
new_key = new_key.replace('norm_out_linear', 'norm_out.linear')
new_key = new_key.replace('to_out_', 'to_out.')
new_state_dict[new_key] = new_val.to(orig_dtype)

View File

@@ -370,6 +370,7 @@ class ModelConfig:
self.is_flux: bool = kwargs.get('is_flux', False)
if self.is_pixart_sigma:
self.is_pixart = True
self.use_flux_cfg = kwargs.get('use_flux_cfg', False)
self.is_ssd: bool = kwargs.get('is_ssd', False)
self.is_vega: bool = kwargs.get('is_vega', False)
self.is_v_pred: bool = kwargs.get('is_v_pred', False)

View File

@@ -2,8 +2,11 @@ import importlib
import inspect
from typing import Union, List, Optional, Dict, Any, Tuple, Callable
import numpy as np
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LMSDiscreteScheduler
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline, LMSDiscreteScheduler, FluxPipeline
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_k_diffusion import ModelWrapper
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
@@ -1202,3 +1205,217 @@ class StableDiffusionXLRefinerPipeline(StableDiffusionXLPipeline):
return StableDiffusionXLPipelineOutput(images=image)
# TODO this is rough. Need to properly stack unconditional
class FluxWithCFGPipeline(FluxPipeline):
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_inference_steps: int = 28,
timesteps: List[int] = None,
guidance_scale: float = 7.0,
num_images_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
height = height or self.default_sample_size * self.vae_scale_factor
width = width or self.default_sample_size * self.vae_scale_factor
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
height,
width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
max_sequence_length=max_sequence_length,
)
self._guidance_scale = guidance_scale
self._joint_attention_kwargs = joint_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
lora_scale = (
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
)
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
negative_text_ids,
) = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
latents, latent_image_ids = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
)
# 5. Prepare timesteps
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
image_seq_len = latents.shape[1]
mu = calculate_shift(
image_seq_len,
self.scheduler.config.base_image_seq_len,
self.scheduler.config.max_image_seq_len,
self.scheduler.config.base_shift,
self.scheduler.config.max_shift,
)
timesteps, num_inference_steps = retrieve_timesteps(
self.scheduler,
num_inference_steps,
device,
timesteps,
sigmas,
mu=mu,
)
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
self._num_timesteps = len(timesteps)
# 6. Denoising loop
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timestep = t.expand(latents.shape[0]).to(latents.dtype)
# handle guidance
if self.transformer.config.guidance_embeds:
guidance = torch.tensor([guidance_scale], device=device)
guidance = guidance.expand(latents.shape[0])
else:
guidance = None
noise_pred_text = self.transformer(
hidden_states=latents,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# todo combine these
noise_pred_uncond = self.transformer(
hidden_states=latents,
# YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
if output_type == "latent":
image = latents
else:
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
image = self.vae.decode(latents, return_dict=False)[0]
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return FluxPipelineOutput(images=image)

View File

@@ -36,7 +36,7 @@ from toolkit.sd_device_states_presets import empty_preset
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import torch
from toolkit.pipelines import CustomStableDiffusionXLPipeline, CustomStableDiffusionPipeline, \
StableDiffusionKDiffusionXLPipeline, StableDiffusionXLRefinerPipeline
StableDiffusionKDiffusionXLPipeline, StableDiffusionXLRefinerPipeline, FluxWithCFGPipeline
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, T2IAdapter, DDPMScheduler, \
StableDiffusionXLAdapterPipeline, StableDiffusionAdapterPipeline, DiffusionPipeline, PixArtTransformer2DModel, \
StableDiffusionXLImg2ImgPipeline, LCMScheduler, Transformer2DModel, AutoencoderTiny, ControlNetModel, \
@@ -797,16 +797,29 @@ class StableDiffusion:
).to(self.device_torch)
pipeline.watermark = None
elif self.is_flux:
pipeline = FluxPipeline(
vae=self.vae,
transformer=self.unet,
text_encoder=self.text_encoder[0],
text_encoder_2=self.text_encoder[1],
tokenizer=self.tokenizer[0],
tokenizer_2=self.tokenizer[1],
scheduler=noise_scheduler,
**extra_args
)
if self.model_config.use_flux_cfg:
pipeline = FluxWithCFGPipeline(
vae=self.vae,
transformer=self.unet,
text_encoder=self.text_encoder[0],
text_encoder_2=self.text_encoder[1],
tokenizer=self.tokenizer[0],
tokenizer_2=self.tokenizer[1],
scheduler=noise_scheduler,
**extra_args
)
else:
pipeline = FluxPipeline(
vae=self.vae,
transformer=self.unet,
text_encoder=self.text_encoder[0],
text_encoder_2=self.text_encoder[1],
tokenizer=self.tokenizer[0],
tokenizer_2=self.tokenizer[1],
scheduler=noise_scheduler,
**extra_args
)
pipeline.watermark = None
elif self.is_v3:
pipeline = Pipe(
@@ -1068,18 +1081,32 @@ class StableDiffusion:
**extra
).images[0]
elif self.is_flux:
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
# negative_prompt_embeds=unconditional_embeds.text_embeds,
# negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
**extra
).images[0]
if self.model_config.use_flux_cfg:
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
negative_prompt_embeds=unconditional_embeds.text_embeds,
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
**extra
).images[0]
else:
img = pipeline(
prompt_embeds=conditional_embeds.text_embeds,
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
# negative_prompt_embeds=unconditional_embeds.text_embeds,
# negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
height=gen_config.height,
width=gen_config.width,
num_inference_steps=gen_config.num_inference_steps,
guidance_scale=gen_config.guidance_scale,
latents=gen_config.latents,
**extra
).images[0]
elif self.is_pixart:
# needs attention masks for some reason
img = pipeline(