Various bug fixes and improvements

This commit is contained in:
Jaret Burkett
2023-08-12 05:59:50 -06:00
parent 67dfd9ced0
commit 379992d89e
5 changed files with 180 additions and 93 deletions

View File

@@ -2,11 +2,12 @@ import copy
import random
from collections import OrderedDict
import os
from contextlib import nullcontext
from typing import Optional, Union, List
from torch.utils.data import ConcatDataset, DataLoader
from toolkit.data_loader import PairedImageDataset
from toolkit.prompt_utils import concat_prompt_embeds
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.stable_diffusion_model import StableDiffusion, PromptEmbeds
from toolkit.train_tools import get_torch_dtype
import gc
from toolkit import train_tools
@@ -80,34 +81,16 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
imgs, prompts = batch
dtype = get_torch_dtype(self.train_config.dtype)
imgs: torch.Tensor = imgs.to(self.device_torch, dtype=dtype)
# split batched images in half so left is negative and right is positive
negative_images, positive_images = torch.chunk(imgs, 2, dim=3)
positive_latents = self.sd.encode_images(positive_images)
negative_latents = self.sd.encode_images(negative_images)
height = positive_images.shape[2]
width = positive_images.shape[3]
batch_size = positive_images.shape[0]
# encode the images
positive_latents = self.sd.vae.encode(positive_images).latent_dist.sample()
positive_latents = positive_latents * 0.18215
negative_latents = self.sd.vae.encode(negative_images).latent_dist.sample()
negative_latents = negative_latents * 0.18215
embedding_list = []
negative_embedding_list = []
# embed the prompts
for prompt in prompts:
embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
# just empty for now
# todo cache this?
negative_embed = self.sd.encode_prompt('').to(self.device_torch, dtype=dtype)
negative_embedding_list.append(negative_embed)
conditional_embeds = concat_prompt_embeds(embedding_list)
unconditional_embeds = concat_prompt_embeds(negative_embedding_list)
if self.train_config.gradient_checkpointing:
# may get disabled elsewhere
self.sd.unet.enable_gradient_checkpointing()
@@ -115,26 +98,12 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(neg, pos, gs, cts, dn):
return self.sd.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
neg, # negative prompt
pos, # positive prompt
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (batch_size,), device=self.device_torch)
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (1,), device=self.device_torch)
timesteps = timesteps.long()
# get noise
@@ -147,6 +116,7 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
if do_mirror_loss:
# mirror the noise
# torch shape is [batch, channels, height, width]
noise_negative = torch.flip(noise_positive.clone(), dims=[3])
else:
noise_negative = noise_positive.clone()
@@ -159,8 +129,6 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
noisy_latents = torch.cat([noisy_positive_latents, noisy_negative_latents], dim=0)
noise = torch.cat([noise_positive, noise_negative], dim=0)
timesteps = torch.cat([timesteps, timesteps], dim=0)
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
unconditional_embeds = concat_prompt_embeds([unconditional_embeds, unconditional_embeds])
network_multiplier = [1.0, -1.0]
flush()
@@ -170,22 +138,31 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
loss_mirror_float = None
self.optimizer.zero_grad()
noisy_latents.requires_grad = False
# if training text encoder enable grads, else do context of no grad
with torch.set_grad_enabled(self.train_config.train_text_encoder):
# text encoding
embedding_list = []
# embed the prompts
for prompt in prompts:
embedding = self.sd.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
conditional_embeds = concat_prompt_embeds(embedding_list)
conditional_embeds = concat_prompt_embeds([conditional_embeds, conditional_embeds])
with self.network:
assert self.network.is_active
loss_list = []
# do positive first
self.network.multiplier = network_multiplier
noise_pred = get_noise_pred(
unconditional_embeds,
conditional_embeds,
1,
timesteps,
noisy_latents
noise_pred = self.sd.predict_noise(
latents=noisy_latents,
conditional_embeddings=conditional_embeds,
timestep=timesteps,
)
if self.sd.is_v2: # check is vpred, don't want to track it down right now
if self.sd.prediction_type == 'v_prediction':
# v-parameterization training
target = noise_scheduler.get_velocity(noisy_latents, noise, timesteps)
else:
@@ -199,7 +176,6 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
loss = loss.mean()
loss_slide_float = loss.item()
if do_mirror_loss:
noise_pred_pos, noise_pred_neg = torch.chunk(noise_pred, 2, dim=0)
# mirror the negative
@@ -221,7 +197,6 @@ class ImageReferenceSliderTrainerProcess(BaseSDTrainProcess):
optimizer.step()
lr_scheduler.step()
# reset network
self.network.multiplier = 1.0

View File

@@ -9,17 +9,21 @@ config:
# for tensorboard logging
log_dir: "/home/jaret/Dev/.tensorboard"
network:
type: "lierla" # lierla is traditional LoRA that works everywhere, only linear layers
rank: 16
alpha: 8
type: "lora"
linear: 64
linear_alpha: 32
conv: 32
conv_alpha: 16
train:
noise_scheduler: "ddpm" # or "ddpm", "lms", "euler_a"
steps: 1000
lr: 5e-5
steps: 5000
lr: 1e-4
train_unet: true
gradient_checkpointing: true
train_text_encoder: false
optimizer: "lion8bit"
train_text_encoder: true
optimizer: "adamw"
optimizer_params:
weight_decay: 1e-2
lr_scheduler: "constant"
max_denoising_steps: 1000
batch_size: 1
@@ -36,11 +40,11 @@ config:
is_v_pred: false # for v-prediction models (most v2 models)
save:
dtype: float16 # precision to save
save_every: 100 # save every this many steps
save_every: 1000 # save every this many steps
max_step_saves_to_keep: 2 # only affects step counts
sample:
sampler: "ddpm" # must match train.noise_scheduler
sample_every: 20 # sample every this many steps
sample_every: 100 # sample every this many steps
width: 512
height: 512
prompts:
@@ -81,6 +85,8 @@ config:
- 512
slider_pair_folder: "/mnt/Datasets/stable-diffusion/slider_reference/subject_turner"
target_class: "photo of a person"
# additional_losses:
# - "mirror"
meta:

View File

@@ -97,21 +97,25 @@ class LoRAModule(torch.nn.Module):
if len(self.multiplier) == 0:
# single item, just return it
return self.multiplier[0]
elif len(self.multiplier) == batch_size:
# not doing CFG
multiplier_tensor = torch.tensor(self.multiplier).to(lora_up.device, dtype=lora_up.dtype)
else:
# we have a list of multipliers, so we need to get the multiplier for this batch
multiplier_tensor = torch.tensor(self.multiplier * 2).to(lora_up.device, dtype=lora_up.dtype)
# should be 1 for if total batch size was 1
num_interleaves = (batch_size // 2) // len(self.multiplier)
multiplier_tensor = multiplier_tensor.repeat_interleave(num_interleaves)
# match lora_up rank
if len(lora_up.size()) == 2:
multiplier_tensor = multiplier_tensor.view(-1, 1)
elif len(lora_up.size()) == 3:
multiplier_tensor = multiplier_tensor.view(-1, 1, 1)
elif len(lora_up.size()) == 4:
multiplier_tensor = multiplier_tensor.view(-1, 1, 1, 1)
return multiplier_tensor
# match lora_up rank
if len(lora_up.size()) == 2:
multiplier_tensor = multiplier_tensor.view(-1, 1)
elif len(lora_up.size()) == 3:
multiplier_tensor = multiplier_tensor.view(-1, 1, 1)
elif len(lora_up.size()) == 4:
multiplier_tensor = multiplier_tensor.view(-1, 1, 1, 1)
return multiplier_tensor
else:
return self.multiplier

View File

@@ -7,9 +7,11 @@ import os
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
from safetensors.torch import save_file
from tqdm import tqdm
from torchvision.transforms import Resize
from library.model_util import convert_unet_state_dict_to_sd, convert_text_encoder_state_dict_to_sd_v2, \
convert_vae_state_dict
from toolkit import train_tools
from toolkit.config_modules import ModelConfig, GenerateImageConfig
from toolkit.metadata import get_meta_for_safetensors
from toolkit.paths import REPOS_ROOT
@@ -180,6 +182,7 @@ class StableDiffusion:
device=self.device_torch,
load_safety_checker=False,
requires_safety_checker=False,
safety_checker=False
).to(self.device_torch)
else:
pipe = pipln.from_single_file(
@@ -189,7 +192,9 @@ class StableDiffusion:
device=self.device_torch,
load_safety_checker=False,
requires_safety_checker=False,
safety_checker=False
).to(self.device_torch)
pipe.register_to_config(requires_safety_checker=False)
text_encoder = pipe.text_encoder
text_encoder.to(self.device_torch, dtype=dtype)
@@ -379,28 +384,60 @@ class StableDiffusion:
dynamic_crops=False, # look into this
dtype=dtype,
).to(self.device_torch, dtype=dtype)
return train_util.concat_embeddings(
prompt_ids, prompt_ids, bs
)
return prompt_ids
else:
return None
def predict_noise(
self,
latents: torch.FloatTensor,
text_embeddings: PromptEmbeds,
timestep: int,
latents: torch.Tensor,
text_embeddings: Union[PromptEmbeds, None] = None,
timestep: Union[int, torch.Tensor] = 1,
guidance_scale=7.5,
guidance_rescale=0, # 0.7
guidance_rescale=0, # 0.7 sdxl
add_time_ids=None,
conditional_embeddings: Union[PromptEmbeds, None] = None,
unconditional_embeddings: Union[PromptEmbeds, None] = None,
**kwargs,
):
# get the embeddings
if text_embeddings is None and conditional_embeddings is None:
raise ValueError("Either text_embeddings or conditional_embeddings must be specified")
if text_embeddings is None and unconditional_embeddings is not None:
text_embeddings = train_tools.concat_prompt_embeddings(
unconditional_embeddings, # negative embedding
conditional_embeddings, # positive embedding
latents.shape[0], # batch size
)
elif text_embeddings is None and conditional_embeddings is not None:
# not doing cfg
text_embeddings = conditional_embeddings
# CFG is comparing neg and positive, if we have concatenated embeddings
# then we are doing it, otherwise we are not and takes half the time.
do_classifier_free_guidance = True
# check if batch size of embeddings matches batch size of latents
if latents.shape[0] == text_embeddings.text_embeds.shape[0]:
do_classifier_free_guidance = False
elif latents.shape[0] * 2 != text_embeddings.text_embeds.shape[0]:
raise ValueError("Batch size of latents must be the same or half the batch size of text embeddings")
if self.is_xl:
if add_time_ids is None:
add_time_ids = self.get_time_ids_from_latents(latents)
latent_model_input = torch.cat([latents] * 2)
if do_classifier_free_guidance:
# todo check this with larget batches
train_util.concat_embeddings(
add_time_ids, add_time_ids, 1
)
else:
# concat to fit batch size
add_time_ids = torch.cat([add_time_ids] * latents.shape[0])
if do_classifier_free_guidance:
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep)
@@ -417,20 +454,24 @@ class StableDiffusion:
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if do_classifier_free_guidance:
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
if guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
if guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
else:
# if we are doing classifier free guidance, need to double up
latent_model_input = torch.cat([latents] * 2)
if do_classifier_free_guidance:
# if we are doing classifier free guidance, need to double up
latent_model_input = torch.cat([latents] * 2)
else:
latent_model_input = latents
latent_model_input = self.noise_scheduler.scale_model_input(latent_model_input, timestep)
@@ -441,10 +482,12 @@ class StableDiffusion:
encoder_hidden_states=text_embeddings.text_embeds,
).sample
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if do_classifier_free_guidance:
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
return noise_pred
@@ -495,14 +538,68 @@ class StableDiffusion:
)
)
def encode_images(
self,
image_list: List[torch.Tensor],
device=None,
dtype=None
):
if device is None:
device = self.device
if dtype is None:
dtype = self.torch_dtype
latent_list = []
# Move to vae to device if on cpu
if self.vae.device == 'cpu':
self.vae.to(self.device)
# move to device and dtype
image_list = [image.to(self.device, dtype=self.torch_dtype) for image in image_list]
# resize images if not divisible by 8
for i in range(len(image_list)):
image = image_list[i]
if image.shape[1] % 8 != 0 or image.shape[2] % 8 != 0:
image_list[i] = Resize((image.shape[1] // 8 * 8, image.shape[2] // 8 * 8))(image)
images = torch.stack(image_list)
latents = self.vae.encode(images).latent_dist.sample()
latents = latents * 0.18215
latents = latents.to(device, dtype=dtype)
return latents
def encode_image_prompt_pairs(
self,
prompt_list: List[str],
image_list: List[torch.Tensor],
device=None,
dtype=None
):
# todo check image types and expand and rescale as needed
# device and dtype are for outputs
if device is None:
device = self.device
if dtype is None:
dtype = self.torch_dtype
embedding_list = []
latent_list = []
# embed the prompts
for prompt in prompt_list:
embedding = self.encode_prompt(prompt).to(self.device_torch, dtype=dtype)
embedding_list.append(embedding)
return embedding_list, latent_list
def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None):
state_dict = {}
def update_sd(prefix, sd):
for k, v in sd.items():
key = prefix + k
v = v.detach().clone().to("cpu").to(get_torch_dtype(save_dtype))
state_dict[key] = v
v = v.detach().clone()
state_dict[key] = v.to("cpu", dtype=get_torch_dtype(save_dtype))
# todo see what logit scale is
if self.is_xl:
@@ -536,4 +633,6 @@ class StableDiffusion:
# prepare metadata
meta = get_meta_for_safetensors(meta)
# make sure parent folder exists
os.makedirs(os.path.dirname(output_file), exist_ok=True)
save_file(state_dict, output_file, metadata=meta)

View File

@@ -34,13 +34,16 @@ SCHEDLER_SCHEDULE = "scaled_linear"
def get_torch_dtype(dtype_str):
# if it is a torch dtype, return it
if isinstance(dtype_str, torch.dtype):
return dtype_str
if dtype_str == "float" or dtype_str == "fp32" or dtype_str == "single" or dtype_str == "float32":
return torch.float
if dtype_str == "fp16" or dtype_str == "half" or dtype_str == "float16":
return torch.float16
if dtype_str == "bf16" or dtype_str == "bfloat16":
return torch.bfloat16
return None
return dtype_str
def replace_filewords_prompt(prompt, args: argparse.Namespace):