Clip max token embeddings to the max rope length for qwen image to solve for an error for super long captions > 1024

This commit is contained in:
Jaret Burkett
2025-08-10 08:44:41 -06:00
parent f0105c33a7
commit 4ad18f3d00

View File

@@ -251,34 +251,44 @@ class QwenImageModel(BaseModel):
**kwargs
):
batch_size, num_channels_latents, height, width = latent_model_input.shape
# pack image tokens
latent_model_input = latent_model_input.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
latent_model_input = latent_model_input.permute(0, 2, 4, 1, 3, 5)
latent_model_input = latent_model_input.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
# make txt_seq_lens match the actual encoder_hidden_states length, and clamp the mask ---
seq_len = text_embeddings.text_embeds.shape[1]
prompt_embeds_mask = text_embeddings.attention_mask.to(self.device_torch, dtype=torch.int64)[:, :seq_len]
txt_seq_lens = [seq_len] * batch_size
img_shapes = [(1, height // 2, width // 2)] * batch_size
# clamp text length to RoPE capacity for this image size
# img_shapes passed to the model
img_h2, img_w2 = height // 2, width // 2
img_shapes = [(1, img_h2, img_w2)] * batch_size
# QwenEmbedRope logic:
max_vid_index = max(img_h2 // 2, img_w2 // 2)
rope_cap = 1024 - max_vid_index # available text positions in RoPE cache
seq_len_actual = text_embeddings.text_embeds.shape[1]
use_len = min(seq_len_actual, rope_cap)
enc_hs = text_embeddings.text_embeds[:, :use_len].to(self.device_torch, self.torch_dtype)
prompt_embeds_mask = text_embeddings.attention_mask.to(self.device_torch, dtype=torch.int64)[:, :use_len]
txt_seq_lens = [use_len] * batch_size
noise_pred = self.transformer(
hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype),
timestep=timestep / 1000,
guidance=None,
encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch, self.torch_dtype),
encoder_hidden_states=enc_hs,
encoder_hidden_states_mask=prompt_embeds_mask,
img_shapes=img_shapes,
txt_seq_lens=txt_seq_lens,
return_dict=False,
**kwargs,
)[0]
# unpack
noise_pred = noise_pred.view(batch_size, height // 2, width // 2, num_channels_latents, 2, 2)
noise_pred = noise_pred.permute(0, 3, 1, 4, 2, 5)
noise_pred = noise_pred.reshape(batch_size, num_channels_latents, height, width)
return noise_pred
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: