Added adapter modules for text encoders and direct vision

This commit is contained in:
Jaret Burkett
2024-02-12 08:46:18 -07:00
parent e074058faa
commit 4ec4025cbb
7 changed files with 645 additions and 27 deletions

View File

@@ -698,7 +698,8 @@ class SDTrainer(BaseSDTrainProcess):
can_disable_adapter = False
was_adapter_active = False
if self.adapter is not None and (isinstance(self.adapter, IPAdapter) or
isinstance(self.adapter, ReferenceAdapter)
isinstance(self.adapter, ReferenceAdapter) or
(isinstance(self.adapter, CustomAdapter))
):
can_disable_adapter = True
was_adapter_active = self.adapter.is_active

View File

@@ -177,6 +177,10 @@ class AdapterConfig:
else:
self.clip_layer = 'last_hidden_state'
# text encoder
self.text_encoder_path: str = kwargs.get('text_encoder_path', None)
self.text_encoder_arch: str = kwargs.get('text_encoder_arch', 'clip') # clip t5
class EmbeddingConfig:
def __init__(self, **kwargs):

View File

@@ -3,11 +3,14 @@ import sys
from PIL import Image
from torch.nn import Parameter
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, CLIPTextModel, \
CLIPTokenizer, T5Tokenizer
from toolkit.models.clip_fusion import CLIPFusionModule
from toolkit.models.clip_pre_processor import CLIPImagePreProcessor
from toolkit.models.ilora import InstantLoRAModule
from toolkit.models.te_adapter import TEAdapter
from toolkit.models.vd_adapter import VisionDirectAdapter
from toolkit.paths import REPOS_ROOT
from toolkit.photomaker import PhotoMakerIDEncoder, FuseModule, PhotoMakerCLIPEncoder
from toolkit.saving import load_ip_adapter_model
@@ -77,6 +80,13 @@ class CustomAdapter(torch.nn.Module):
self.clip_fusion_module: CLIPFusionModule = None
self.ilora_module: InstantLoRAModule = None
self.te: Union[T5EncoderModel, CLIPTextModel] = None
self.tokenizer: CLIPTokenizer = None
self.te_adapter: TEAdapter = None
self.vd_adapter: VisionDirectAdapter = None
self.conditional_embeds: Optional[torch.Tensor] = None
self.unconditional_embeds: Optional[torch.Tensor] = None
self.setup_adapter()
if self.adapter_type == 'photo_maker':
@@ -117,6 +127,23 @@ class CustomAdapter(torch.nn.Module):
vision_hidden_size=self.vision_encoder.config.hidden_size,
sd=self.sd_ref()
)
elif self.adapter_type == 'text_encoder':
if self.config.text_encoder_arch == 't5':
self.te = T5EncoderModel.from_pretrained(self.config.text_encoder_path).to(self.sd_ref().unet.device,
dtype=get_torch_dtype(
self.sd_ref().dtype))
self.tokenizer = T5Tokenizer.from_pretrained(self.config.text_encoder_path)
elif self.config.text_encoder_arch == 'clip':
self.te = CLIPTextModel.from_pretrained(self.config.text_encoder_path).to(self.sd_ref().unet.device,
dtype=get_torch_dtype(
self.sd_ref().dtype))
self.tokenizer = CLIPTokenizer.from_pretrained(self.config.text_encoder_path)
else:
raise ValueError(f"unknown text encoder arch: {self.config.text_encoder_arch}")
self.te_adapter = TEAdapter(self, self.sd_ref(), self.te, self.tokenizer)
elif self.adapter_type == 'vision_direct':
self.vd_adapter = VisionDirectAdapter(self, self.sd_ref(), self.vision_encoder)
else:
raise ValueError(f"unknown adapter type: {self.adapter_type}")
@@ -148,6 +175,8 @@ class CustomAdapter(torch.nn.Module):
def setup_clip(self):
adapter_config = self.config
sd = self.sd_ref()
if self.config.type == "text_encoder":
return
if self.config.type == 'photo_maker':
try:
self.image_processor = CLIPImageProcessor.from_pretrained(self.config.image_encoder_path)
@@ -298,6 +327,12 @@ class CustomAdapter(torch.nn.Module):
raise ValueError(f"unknown shape: {v.shape}")
self.fuse_module.load_state_dict(current_state_dict, strict=strict)
if 'te_adapter' in state_dict:
self.te_adapter.load_state_dict(state_dict['te_adapter'], strict=strict)
if 'vd_adapter' in state_dict:
self.vd_adapter.load_state_dict(state_dict['vd_adapter'], strict=strict)
if 'vision_encoder' in state_dict and self.config.train_image_encoder:
self.vision_encoder.load_state_dict(state_dict['vision_encoder'], strict=strict)
@@ -325,6 +360,12 @@ class CustomAdapter(torch.nn.Module):
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
state_dict["clip_fusion"] = self.clip_fusion_module.state_dict()
return state_dict
elif self.adapter_type == 'text_encoder':
state_dict["te_adapter"] = self.te_adapter.state_dict()
return state_dict
elif self.adapter_type == 'vision_direct':
state_dict["vd_adapter"] = self.vd_adapter.state_dict()
return state_dict
elif self.adapter_type == 'ilora':
if self.config.train_image_encoder:
state_dict["vision_encoder"] = self.vision_encoder.state_dict()
@@ -338,7 +379,16 @@ class CustomAdapter(torch.nn.Module):
prompt: Union[List[str], str],
is_unconditional: bool = False,
):
if self.adapter_type == 'clip_fusion' or self.adapter_type == 'ilora':
if self.adapter_type == 'clip_fusion' or self.adapter_type == 'ilora' or self.adapter_type == 'vision_direct':
return prompt
elif self.adapter_type == 'text_encoder':
# todo allow for training
with torch.no_grad():
# encode and save the embeds
if is_unconditional:
self.unconditional_embeds = self.te_adapter.encode_text(prompt).detach()
else:
self.conditional_embeds = self.te_adapter.encode_text(prompt).detach()
return prompt
elif self.adapter_type == 'photo_maker':
if is_unconditional:
@@ -429,6 +479,9 @@ class CustomAdapter(torch.nn.Module):
return prompt
else:
return prompt
def condition_encoded_embeds(
self,
tensors_0_1: torch.Tensor,
@@ -534,11 +587,9 @@ class CustomAdapter(torch.nn.Module):
img_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
img_embeds = img_embeds.detach()
prompt_embeds.text_embeds = self.clip_fusion_module(
prompt_embeds.text_embeds,
img_embeds
@@ -547,7 +598,24 @@ class CustomAdapter(torch.nn.Module):
else:
raise NotImplementedError
return prompt_embeds
def get_empty_clip_image(self, batch_size: int) -> torch.Tensor:
with torch.no_grad():
tensors_0_1 = torch.rand([batch_size, 3, self.input_size, self.input_size], device=self.device)
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
return clip_image.detach()
def trigger_pre_te(
self,
@@ -556,22 +624,11 @@ class CustomAdapter(torch.nn.Module):
has_been_preprocessed=False,
quad_count=4,
) -> PromptEmbeds:
if self.adapter_type == 'ilora':
if self.adapter_type == 'ilora' or self.adapter_type == 'vision_direct':
if tensors_0_1 is None:
# scale the noise down
tensors_0_1 = torch.rand([1, 3, self.input_size, self.input_size], device=self.device)
noise_scale = torch.rand([tensors_0_1.shape[0], 1, 1, 1], device=self.device,
dtype=get_torch_dtype(self.sd_ref().dtype))
tensors_0_1 = tensors_0_1 * noise_scale
# tensors_0_1 = tensors_0_1 * 0
mean = torch.tensor(self.clip_image_processor.image_mean).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
std = torch.tensor(self.clip_image_processor.image_std).to(
self.device, dtype=get_torch_dtype(self.sd_ref().dtype)
).detach()
tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
tensors_0_1 = self.get_empty_clip_image(1)
has_been_preprocessed = True
with torch.no_grad():
# on training the clip image is created in the dataloader
if not has_been_preprocessed:
@@ -593,6 +650,15 @@ class CustomAdapter(torch.nn.Module):
).pixel_values
else:
clip_image = tensors_0_1
batch_size = clip_image.shape[0]
if self.adapter_type == 'vision_direct':
# add an unconditional so we can save it
unconditional = self.get_empty_clip_image(batch_size).to(
clip_image.device, dtype=clip_image.dtype
)
clip_image = torch.cat([unconditional, clip_image], dim=0)
clip_image = clip_image.to(self.device, dtype=get_torch_dtype(self.sd_ref().dtype)).detach()
if self.config.quad_image:
@@ -637,11 +703,36 @@ class CustomAdapter(torch.nn.Module):
img_embeds = chunk_sum / quad_count
if not is_training or not self.config.train_image_encoder:
img_embeds = img_embeds.detach()
self.ilora_module(img_embeds)
if self.adapter_type == 'vision_direct':
with torch.set_grad_enabled(is_training):
if is_training and self.config.train_image_encoder:
self.vision_encoder.train()
clip_image = clip_image.requires_grad_(True)
else:
with torch.no_grad():
self.vision_encoder.eval()
clip_output = self.vision_encoder(
clip_image,
output_hidden_states=True,
)
if self.config.clip_layer == 'penultimate_hidden_states':
# they skip last layer for ip+
# https://github.com/tencent-ailab/IP-Adapter/blob/f4b6742db35ea6d81c7b829a55b0a312c7f5a677/tutorial_train_plus.py#L403C26-L403C26
clip_image_embeds = clip_output.hidden_states[-2]
elif self.config.clip_layer == 'last_hidden_state':
clip_image_embeds = clip_output.hidden_states[-1]
else:
clip_image_embeds = clip_output.image_embeds
if not is_training or not self.config.train_image_encoder:
clip_image_embeds = clip_image_embeds.detach()
# save them to the conditional and unconditional
self.unconditional_embeds, self.conditional_embeds = clip_image_embeds.chunk(2, dim=0)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
if self.config.type == 'photo_maker':
@@ -656,5 +747,11 @@ class CustomAdapter(torch.nn.Module):
yield from self.ilora_module.parameters(recurse)
if self.config.train_image_encoder:
yield from self.vision_encoder.parameters(recurse)
elif self.config.type == 'text_encoder':
for attn_processor in self.te_adapter.adapter_modules:
yield from attn_processor.parameters(recurse)
elif self.config.type == 'vision_direct':
for attn_processor in self.vd_adapter.adapter_modules:
yield from attn_processor.parameters(recurse)
else:
raise NotImplementedError

View File

@@ -407,11 +407,11 @@ class ImageProcessingDTOMixin:
w, h = img.size
if w > h and self.scale_to_width < self.scale_to_height:
# throw error, they should match
raise ValueError(
print(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
elif h > w and self.scale_to_height < self.scale_to_width:
# throw error, they should match
raise ValueError(
print(
f"unexpected values: w={w}, h={h}, file_item.scale_to_width={self.scale_to_width}, file_item.scale_to_height={self.scale_to_height}, file_item.path={self.path}")
if self.flip_x:
@@ -681,10 +681,12 @@ class ClipImageFileItemDTOMixin:
self.clip_image_embeds_unconditional = load_file(unconditional_path)
return
img = Image.open(self.clip_image_path).convert('RGB')
try:
img = Image.open(self.clip_image_path).convert('RGB')
img = exif_transpose(img)
except Exception as e:
# make a random noise image
img = Image.new('RGB', (self.dataset_config.resolution, self.dataset_config.resolution))
print(f"Error: {e}")
print(f"Error loading image: {self.clip_image_path}")

View File

@@ -0,0 +1,260 @@
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)
from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.custom_adapter import CustomAdapter
class TEAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Custom TE for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
num_tokens (`int`, defaults to 4 when do ip_adapter_plus it should be 16):
The context length of the image features.
adapter
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None,
adapter_hidden_size=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.num_tokens = num_tokens
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
@property
def is_active(self):
return self.adapter_ref().is_active
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
# will be none if disabled
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
# only use one TE or the other. If our adapter is active only use ours
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds
# check if we are doing unconditional
if self.unconditional_embeds is not None and adapter_hidden_states.shape[0] != encoder_hidden_states.shape[0]:
# concat unconditional to match the hidden state batch size
if self.unconditional_embeds.shape[0] == 1 and adapter_hidden_states.shape[0] != 1:
unconditional = torch.cat([self.unconditional_embeds] * adapter_hidden_states.shape[0], dim=0)
else:
unconditional = self.unconditional_embeds
adapter_hidden_states = torch.cat([unconditional, adapter_hidden_states], dim=0)
# for ip-adapter
key = self.to_k_adapter(adapter_hidden_states)
value = self.to_v_adapter(adapter_hidden_states)
else:
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
try:
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
except RuntimeError:
raise RuntimeError(f"key shape: {key.shape}, value shape: {value.shape}")
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class TEAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
te: Union[T5EncoderModel, CLIPTextModel],
tokenizer: CLIPTokenizer
):
super(TEAdapter, self).__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref: weakref.ref = weakref.ref(sd)
self.te_ref: weakref.ref = weakref.ref(te)
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer)
self.token_size = self.te_ref().config.d_model
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
for name in sd.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
# add zero padding to the adapter
if to_k_adapter.shape[1] < self.token_size:
to_k_adapter = torch.cat([
to_k_adapter,
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
to_v_adapter = torch.cat([
to_v_adapter,
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
elif to_k_adapter.shape[1] > self.token_size:
to_k_adapter = to_k_adapter[:, :self.token_size]
to_v_adapter = to_v_adapter[:, :self.token_size]
else:
to_k_adapter = to_k_adapter
to_v_adapter = to_v_adapter
# todo resize to the TE hidden size
weights = {
"to_k_adapter.weight": to_k_adapter,
"to_v_adapter.weight": to_v_adapter,
}
attn_procs[name] = TEAdapterAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
num_tokens=self.adapter_ref().config.num_tokens,
adapter=self,
adapter_hidden_size=self.token_size
)
attn_procs[name].load_state_dict(weights)
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
# make a getter to see if is active
@property
def is_active(self):
return self.adapter_ref().is_active
def encode_text(self, text):
te: T5EncoderModel = self.te_ref()
tokenizer: T5Tokenizer = self.tokenizer_ref()
input_ids = tokenizer(
text,
max_length=77,
padding="max_length",
truncation=True,
return_tensors="pt",
).input_ids.to(te.device)
outputs = te(input_ids=input_ids)
return outputs.last_hidden_state
def forward(self, input):
return input

View File

@@ -0,0 +1,253 @@
import sys
import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import Union, TYPE_CHECKING
from transformers import T5EncoderModel, CLIPTextModel, CLIPTokenizer, T5Tokenizer, CLIPVisionModelWithProjection
from toolkit.paths import REPOS_ROOT
sys.path.append(REPOS_ROOT)
from ipadapter.ip_adapter.attention_processor import AttnProcessor2_0
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import StableDiffusion
from toolkit.custom_adapter import CustomAdapter
class VisionDirectAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Custom TE for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
scale (`float`, defaults to 1.0):
the weight scale of image prompt.
adapter
"""
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, adapter=None,
adapter_hidden_size=None):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.hidden_size = hidden_size
self.adapter_hidden_size = adapter_hidden_size
self.cross_attention_dim = cross_attention_dim
self.scale = scale
self.to_k_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
self.to_v_adapter = nn.Linear(adapter_hidden_size, hidden_size, bias=False)
@property
def is_active(self):
return self.adapter_ref().is_active
@property
def unconditional_embeds(self):
return self.adapter_ref().adapter_ref().unconditional_embeds
@property
def conditional_embeds(self):
return self.adapter_ref().adapter_ref().conditional_embeds
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
):
is_active = self.adapter_ref().is_active
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
# will be none if disabled
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# only use one TE or the other. If our adapter is active only use ours
if self.is_active and self.conditional_embeds is not None:
adapter_hidden_states = self.conditional_embeds
if adapter_hidden_states.shape[0] < batch_size:
adapter_hidden_states = torch.cat([
self.unconditional_embeds,
adapter_hidden_states
])
# conditional_batch_size = adapter_hidden_states.shape[0]
# conditional_query = query
# for ip-adapter
vd_key = self.to_k_adapter(adapter_hidden_states)
vd_value = self.to_v_adapter(adapter_hidden_states)
vd_key = vd_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
vd_value = vd_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
vd_hidden_states = F.scaled_dot_product_attention(
query, vd_key, vd_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
vd_hidden_states = vd_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
vd_hidden_states = vd_hidden_states.to(query.dtype)
hidden_states = hidden_states + self.scale * vd_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class VisionDirectAdapter(torch.nn.Module):
def __init__(
self,
adapter: 'CustomAdapter',
sd: 'StableDiffusion',
vision_model: Union[CLIPVisionModelWithProjection],
):
super(VisionDirectAdapter, self).__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref: weakref.ref = weakref.ref(sd)
self.vision_model_ref: weakref.ref = weakref.ref(vision_model)
self.token_size = vision_model.config.hidden_size
# init adapter modules
attn_procs = {}
unet_sd = sd.unet.state_dict()
for name in sd.unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else sd.unet.config['cross_attention_dim']
if name.startswith("mid_block"):
hidden_size = sd.unet.config['block_out_channels'][-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(sd.unet.config['block_out_channels']))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = sd.unet.config['block_out_channels'][block_id]
else:
# they didnt have this, but would lead to undefined below
raise ValueError(f"unknown attn processor name: {name}")
if cross_attention_dim is None:
attn_procs[name] = AttnProcessor2_0()
else:
layer_name = name.split(".processor")[0]
to_k_adapter = unet_sd[layer_name + ".to_k.weight"]
to_v_adapter = unet_sd[layer_name + ".to_v.weight"]
# add zero padding to the adapter
if to_k_adapter.shape[1] < self.token_size:
to_k_adapter = torch.cat([
to_k_adapter,
torch.randn(to_k_adapter.shape[0], self.token_size - to_k_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
to_v_adapter = torch.cat([
to_v_adapter,
torch.randn(to_v_adapter.shape[0], self.token_size - to_v_adapter.shape[1]).to(
to_k_adapter.device, dtype=to_k_adapter.dtype) * 0.01
],
dim=1
)
elif to_k_adapter.shape[1] > self.token_size:
to_k_adapter = to_k_adapter[:, :self.token_size]
to_v_adapter = to_v_adapter[:, :self.token_size]
else:
to_k_adapter = to_k_adapter
to_v_adapter = to_v_adapter
# todo resize to the TE hidden size
weights = {
"to_k_adapter.weight": to_k_adapter,
"to_v_adapter.weight": to_v_adapter,
}
attn_procs[name] = VisionDirectAdapterAttnProcessor(
hidden_size=hidden_size,
cross_attention_dim=cross_attention_dim,
scale=1.0,
adapter=self,
adapter_hidden_size=self.token_size
)
attn_procs[name].load_state_dict(weights)
sd.unet.set_attn_processor(attn_procs)
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
# make a getter to see if is active
@property
def is_active(self):
return self.adapter_ref().is_active
def forward(self, input):
return input

View File

@@ -478,6 +478,7 @@ class StableDiffusion:
gen_config = image_configs[i]
extra = {}
validation_image = None
if self.adapter is not None and gen_config.adapter_image_path is not None:
validation_image = Image.open(gen_config.adapter_image_path).convert("RGB")
if isinstance(self.adapter, T2IAdapter):
@@ -528,7 +529,7 @@ class StableDiffusion:
)
gen_config.negative_prompt_2 = gen_config.negative_prompt
if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and validation_image is not None:
self.adapter.trigger_pre_te(
tensors_0_1=validation_image,
is_training=False,
@@ -559,7 +560,7 @@ class StableDiffusion:
conditional_embeds = self.adapter(conditional_embeds, conditional_clip_embeds)
unconditional_embeds = self.adapter(unconditional_embeds, unconditional_clip_embeds)
if self.adapter is not None and isinstance(self.adapter, CustomAdapter):
if self.adapter is not None and isinstance(self.adapter, CustomAdapter) and validation_image is not None:
conditional_embeds = self.adapter.condition_encoded_embeds(
tensors_0_1=validation_image,
prompt_embeds=conditional_embeds,