WIP implementing training

This commit is contained in:
Jaret Burkett
2023-07-12 08:23:46 -06:00
parent 47d094e528
commit 57f14e5ef2
16 changed files with 1031 additions and 67 deletions

View File

@@ -10,17 +10,25 @@ a general understanding of python, pip, pytorch, and using virtual environments:
Linux:
```bash
git submodule update --init --recursive
pythion3 -m venv venv
source venv/bin/activate
pip install -r requirements.txt
cd requirements/sd-scripts
pip install --no-deps -e .
cd ../..
```
Windows:
```bash
git submodule update --init --recursive
pythion3 -m venv venv
venv\Scripts\activate
pip install -r requirements.txt
cd requirements/sd-scripts
pip install --no-deps -e .
cd ../..
```
## Current Tools

View File

@@ -5,7 +5,11 @@
"base_model": "/path/to/base/model",
"training_folder": "/path/to/output/folder",
"is_v2": false,
"device": "cpu",
"device": "cuda",
"gradient_accumulation_steps": 1,
"mixed_precision": "fp16",
"logging_dir": "/path/to/tensorboard/log/folder",
"process": [
{
"type": "fine_tune"

View File

@@ -1,3 +1,4 @@
import importlib
from collections import OrderedDict
from typing import List
@@ -48,6 +49,8 @@ class BaseJob:
if len(self.config['process']) == 0:
raise ValueError('config file is invalid. "config.process" must be a list of processes')
module = importlib.import_module('jobs.process')
# add the processes
self.process = []
for i, process in enumerate(self.config['process']):
@@ -56,7 +59,8 @@ class BaseJob:
# check if dict key is process type
if process['type'] in process_dict:
self.process.append(process_dict[process['type']](i, self, process))
ProcessClass = getattr(module, process_dict[process['type']])
self.process.append(ProcessClass(i, self, process))
else:
raise ValueError(f'config file is invalid. Unknown process type: {process["type"]}')

View File

@@ -1,19 +1,16 @@
from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
from .BaseJob import BaseJob
from collections import OrderedDict
from typing import List
from jobs.process import BaseExtractProcess
from jobs.process import ExtractLoconProcess
from jobs import BaseJob
process_dict = {
'locon': ExtractLoconProcess,
'locon': 'ExtractLoconProcess',
}
class ExtractJob(BaseJob):
process: List[BaseExtractProcess]
def __init__(self, config: OrderedDict):
super().__init__(config)

View File

@@ -1,38 +1,85 @@
from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
from .BaseJob import BaseJob
from collections import OrderedDict
from typing import List
from jobs.process import BaseExtractProcess, TrainFineTuneProcess
process_dict = {
'fine_tine': TrainFineTuneProcess
}
class TrainJob(BaseJob):
process: List[BaseExtractProcess]
def __init__(self, config: OrderedDict):
super().__init__(config)
self.base_model_path = self.get_conf('base_model', required=True)
self.base_model = None
self.training_folder = self.get_conf('training_folder', required=True)
self.is_v2 = self.get_conf('is_v2', False)
self.device = self.get_conf('device', 'cpu')
# loads the processes from the config
self.load_processes(process_dict)
def run(self):
super().run()
# load models
print(f"Loading base model for training")
print(f" - Loading base model: {self.base_model_path}")
self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path)
print("")
print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
for process in self.process:
process.run()
# from jobs import BaseJob
# from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
# from collections import OrderedDict
# from typing import List
# from jobs.process import BaseExtractProcess, TrainFineTuneProcess
# import gc
# import time
# import argparse
# import itertools
# import math
# import os
# from multiprocessing import Value
#
# from tqdm import tqdm
# import torch
# from accelerate.utils import set_seed
# from accelerate import Accelerator
# import diffusers
# from diffusers import DDPMScheduler
#
# from toolkit.paths import SD_SCRIPTS_ROOT
#
# import sys
#
# sys.path.append(SD_SCRIPTS_ROOT)
#
# import library.train_util as train_util
# import library.config_util as config_util
# from library.config_util import (
# ConfigSanitizer,
# BlueprintGenerator,
# )
# import toolkit.train_tools as train_tools
# import library.custom_train_functions as custom_train_functions
# from library.custom_train_functions import (
# apply_snr_weight,
# get_weighted_text_embeddings,
# prepare_scheduler_for_custom_training,
# pyramid_noise_like,
# apply_noise_offset,
# scale_v_prediction_loss_like_noise_prediction,
# )
#
# process_dict = {
# 'fine_tine': 'TrainFineTuneProcess'
# }
#
#
# class TrainJob(BaseJob):
# process: List[BaseExtractProcess]
#
# def __init__(self, config: OrderedDict):
# super().__init__(config)
# self.base_model_path = self.get_conf('base_model', required=True)
# self.base_model = None
# self.training_folder = self.get_conf('training_folder', required=True)
# self.is_v2 = self.get_conf('is_v2', False)
# self.device = self.get_conf('device', 'cpu')
# self.gradient_accumulation_steps = self.get_conf('gradient_accumulation_steps', 1)
# self.mixed_precision = self.get_conf('mixed_precision', False) # fp16
# self.logging_dir = self.get_conf('logging_dir', None)
#
# # loads the processes from the config
# self.load_processes(process_dict)
#
# # setup accelerator
# self.accelerator = Accelerator(
# gradient_accumulation_steps=self.gradient_accumulation_steps,
# mixed_precision=self.mixed_precision,
# log_with=None if self.logging_dir is None else 'tensorboard',
# logging_dir=self.logging_dir,
# )
#
# def run(self):
# super().run()
# # load models
# print(f"Loading base model for training")
# print(f" - Loading base model: {self.base_model_path}")
# self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path)
#
# print("")
# print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
#
# for process in self.process:
# process.run()

View File

@@ -1,3 +1,2 @@
from .BaseJob import BaseJob
from .ExtractJob import ExtractJob
from .TrainJob import TrainJob

View File

@@ -3,13 +3,13 @@ from collections import OrderedDict
from safetensors.torch import save_file
from jobs import ExtractJob
from jobs.process.BaseProcess import BaseProcess
from toolkit.metadata import get_meta_for_safetensors
from typing import ForwardRef
class BaseExtractProcess(BaseProcess):
job: ExtractJob
process_id: int
config: OrderedDict
output_folder: str
@@ -19,7 +19,7 @@ class BaseExtractProcess(BaseProcess):
def __init__(
self,
process_id: int,
job: ExtractJob,
job,
config: OrderedDict
):
super().__init__(process_id, job, config)

View File

@@ -1,8 +1,7 @@
import copy
import json
from collections import OrderedDict
from jobs import BaseJob
from typing import ForwardRef
class BaseProcess:
@@ -11,7 +10,7 @@ class BaseProcess:
def __init__(
self,
process_id: int,
job: BaseJob,
job: 'BaseJob',
config: OrderedDict
):
self.process_id = process_id
@@ -40,3 +39,5 @@ class BaseProcess:
def add_meta(self, additional_meta: OrderedDict):
self.meta.update(additional_meta)
from jobs import BaseJob

View File

@@ -1,17 +1,15 @@
from collections import OrderedDict
from jobs import TrainJob
from jobs.process.BaseProcess import BaseProcess
class BaseTrainProcess(BaseProcess):
job: TrainJob
process_id: int
config: OrderedDict
def __init__(
self,
process_id: int,
job: TrainJob,
job,
config: OrderedDict
):
super().__init__(process_id, job, config)

View File

@@ -1,7 +1,6 @@
from collections import OrderedDict
from toolkit.lycoris_utils import extract_diff
from .BaseExtractProcess import BaseExtractProcess
from .. import ExtractJob
mode_dict = {
'fixed': {
@@ -28,7 +27,7 @@ mode_dict = {
class ExtractLoconProcess(BaseExtractProcess):
def __init__(self, process_id: int, job: ExtractJob, config: OrderedDict):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.mode = self.get_conf('mode', 'fixed')
self.use_sparse_bias = self.get_conf('use_sparse_bias', False)

View File

@@ -3,4 +3,5 @@ safetensors
diffusers
transformers
lycoris_lora
flatten_json
flatten_json
accelerator

6
run.py
View File

@@ -1,9 +1,5 @@
import os
import sys
from collections import OrderedDict
from jobs import BaseJob
sys.path.insert(0, os.getcwd())
import argparse
from toolkit.job import get_job
@@ -49,6 +45,8 @@ def main():
jobs_completed = 0
jobs_failed = 0
print(f"Running {len(config_file_list)} job{'' if len(config_file_list) == 1 else 's'}")
for config_file in config_file_list:
try:
job = get_job(config_file)

547
scripts/train_dreambooth.py Normal file
View File

@@ -0,0 +1,547 @@
import gc
import time
import argparse
import itertools
import math
import os
from multiprocessing import Value
from tqdm import tqdm
import torch
from accelerate.utils import set_seed
import diffusers
from diffusers import DDPMScheduler
import library.train_util as train_util
import library.config_util as config_util
from library.config_util import (
ConfigSanitizer,
BlueprintGenerator,
)
import custom_tools.train_tools as train_tools
import library.custom_train_functions as custom_train_functions
from library.custom_train_functions import (
apply_snr_weight,
get_weighted_text_embeddings,
prepare_scheduler_for_custom_training,
pyramid_noise_like,
apply_noise_offset,
scale_v_prediction_loss_like_noise_prediction,
)
# perlin_noise,
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
SD_SCRIPTS_ROOT = os.path.join(PROJECT_ROOT, "repositories", "sd-scripts")
def train(args):
train_util.verify_training_args(args)
train_util.prepare_dataset_args(args, False)
cache_latents = args.cache_latents
if args.seed is not None:
set_seed(args.seed) # 乱数系列を初期化する
tokenizer = train_util.load_tokenizer(args)
# データセットを準備する
if args.dataset_class is None:
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True))
if args.dataset_config is not None:
print(f"Load dataset config from {args.dataset_config}")
user_config = config_util.load_user_config(args.dataset_config)
ignored = ["train_data_dir", "reg_data_dir"]
if any(getattr(args, attr) is not None for attr in ignored):
print(
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
", ".join(ignored)
)
)
else:
user_config = {
"datasets": [
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
]
}
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
else:
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
current_epoch = Value("i", 0)
current_step = Value("i", 0)
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
if args.no_token_padding:
train_dataset_group.disable_token_padding()
if args.debug_dataset:
train_util.debug_dataset(train_dataset_group)
return
if cache_latents:
assert (
train_dataset_group.is_latent_cacheable()
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
# replace captions with names
if args.name_replace is not None:
print(f"Replacing captions [name] with '{args.name_replace}'")
train_dataset_group = train_tools.replace_filewords_in_dataset_group(
train_dataset_group, args
)
# acceleratorを準備する
print("prepare accelerator")
if args.gradient_accumulation_steps > 1:
print(
f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong"
)
print(
f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデルU-NetおよびText Encoderの学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です"
)
accelerator, unwrap_model = train_util.prepare_accelerator(args)
# mixed precisionに対応した型を用意しておき適宜castする
weight_dtype, save_dtype = train_util.prepare_dtype(args)
# モデルを読み込む
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
# verify load/save model formats
if load_stable_diffusion_format:
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
src_diffusers_model_path = None
else:
src_stable_diffusion_ckpt = None
src_diffusers_model_path = args.pretrained_model_name_or_path
if args.save_model_as is None:
save_stable_diffusion_format = load_stable_diffusion_format
use_safetensors = args.use_safetensors
else:
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
# モデルに xformers とか memory efficient attention を組み込む
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
# 学習を準備する
if cache_latents:
vae.to(accelerator.device, dtype=weight_dtype)
vae.requires_grad_(False)
vae.eval()
with torch.no_grad():
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
vae.to("cpu")
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
accelerator.wait_for_everyone()
# 学習を準備する:モデルを適切な状態にする
train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0
unet.requires_grad_(True) # 念のため追加
text_encoder.requires_grad_(train_text_encoder)
if not train_text_encoder:
print("Text Encoder is not trained.")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
text_encoder.gradient_checkpointing_enable()
if not cache_latents:
vae.requires_grad_(False)
vae.eval()
vae.to(accelerator.device, dtype=weight_dtype)
# 学習に必要なクラスを準備する
print("prepare optimizer, data loader etc.")
if train_text_encoder:
trainable_params = itertools.chain(unet.parameters(), text_encoder.parameters())
else:
trainable_params = unet.parameters()
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
# dataloaderを準備する
# DataLoaderのプロセス数0はメインプロセスになる
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
train_dataloader = torch.utils.data.DataLoader(
train_dataset_group,
batch_size=1,
shuffle=True,
collate_fn=collater,
num_workers=n_workers,
persistent_workers=args.persistent_data_loader_workers,
)
# 学習ステップ数を計算する
if args.max_train_epochs is not None:
args.max_train_steps = args.max_train_epochs * math.ceil(
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
)
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
# データセット側にも学習ステップを送信
train_dataset_group.set_max_train_steps(args.max_train_steps)
if args.stop_text_encoder_training is None:
args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end
# lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
# 実験的機能勾配も含めたfp16学習を行う モデル全体をfp16にする
if args.full_fp16:
assert (
args.mixed_precision == "fp16"
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
print("enable full fp16 training.")
unet.to(weight_dtype)
text_encoder.to(weight_dtype)
# acceleratorがなんかよろしくやってくれるらしい
if train_text_encoder:
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
)
else:
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
# transform DDP after prepare
text_encoder, unet = train_util.transform_if_model_is_DDP(text_encoder, unet)
if not train_text_encoder:
text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error
# 実験的機能勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
if args.full_fp16:
train_util.patch_accelerator_for_fp16_training(accelerator)
# resumeする
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
# epoch数を計算する
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
# 学習する
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
print("running training / 学習開始")
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
print(f" num epochs / epoch数: {num_train_epochs}")
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
global_step = 0
noise_scheduler = DDPMScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
)
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
if accelerator.is_main_process:
accelerator.init_trackers("dreambooth" if args.log_tracker_name is None else args.log_tracker_name)
if args.sample_first or args.sample_only:
# Do initial sample before starting training
train_tools.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer,
text_encoder, unet, force_sample=True)
if args.sample_only:
return
loss_list = []
loss_total = 0.0
for epoch in range(num_train_epochs):
print(f"\nepoch {epoch+1}/{num_train_epochs}")
current_epoch.value = epoch + 1
# 指定したステップ数までText Encoderを学習するepoch最初の状態
unet.train()
# train==True is required to enable gradient_checkpointing
if args.gradient_checkpointing or global_step < args.stop_text_encoder_training:
text_encoder.train()
for step, batch in enumerate(train_dataloader):
current_step.value = global_step
# 指定したステップ数でText Encoderの学習を止める
if global_step == args.stop_text_encoder_training:
print(f"stop text encoder training at step {global_step}")
if not args.gradient_checkpointing:
text_encoder.train(False)
text_encoder.requires_grad_(False)
with accelerator.accumulate(unet):
with torch.no_grad():
# latentに変換
if cache_latents:
latents = batch["latents"].to(accelerator.device)
else:
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * 0.18215
b_size = latents.shape[0]
# Sample noise that we'll add to the latents
if args.train_noise_seed is not None:
torch.manual_seed(args.train_noise_seed)
torch.cuda.manual_seed(args.train_noise_seed)
# make same seed for each item in the batch by stacking them
single_noise = torch.randn_like(latents[0])
noise = torch.stack([single_noise for _ in range(b_size)])
noise = noise.to(latents.device)
elif args.seed_lock:
noise = train_tools.get_noise_from_latents(latents)
else:
noise = torch.randn_like(latents, device=latents.device)
if args.noise_offset:
noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale)
elif args.multires_noise_iterations:
noise = pyramid_noise_like(noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount)
# elif args.perlin_noise:
# noise = perlin_noise(noise, latents.device, args.perlin_noise) # only shape of noise is used currently
# Get the text embedding for conditioning
with torch.set_grad_enabled(global_step < args.stop_text_encoder_training):
if args.weighted_captions:
encoder_hidden_states = get_weighted_text_embeddings(
tokenizer,
text_encoder,
batch["captions"],
accelerator.device,
args.max_token_length // 75 if args.max_token_length else 1,
clip_skip=args.clip_skip,
)
else:
input_ids = batch["input_ids"].to(accelerator.device)
encoder_hidden_states = train_util.get_hidden_states(
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
)
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Predict the noise residual
with accelerator.autocast():
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
if args.v_parameterization:
# v-parameterization training
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
target = noise
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
loss = loss.mean([1, 2, 3])
loss_weights = batch["loss_weights"] # 各sampleごとのweight
loss = loss * loss_weights
if args.min_snr_gamma:
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
if args.scale_v_pred_loss_like_noise_pred:
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
accelerator.backward(loss)
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
if train_text_encoder:
params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters())
else:
params_to_clip = unet.parameters()
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=True)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
train_util.sample_images(
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
)
# 指定ステップごとにモデルを保存
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
accelerator.wait_for_everyone()
if accelerator.is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_epoch_end_or_stepwise(
args,
False,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
current_loss = loss.detach().item()
if args.logging_dir is not None:
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): # tracking d*lr value
logs["lr/d*lr"] = (
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
)
accelerator.log(logs, step=global_step)
if epoch == 0:
loss_list.append(current_loss)
else:
loss_total -= loss_list[step]
loss_list[step] = current_loss
loss_total += current_loss
avr_loss = loss_total / len(loss_list)
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
if global_step >= args.max_train_steps:
break
if args.logging_dir is not None:
logs = {"loss/epoch": loss_total / len(loss_list)}
accelerator.log(logs, step=epoch + 1)
accelerator.wait_for_everyone()
if args.save_every_n_epochs is not None:
if accelerator.is_main_process:
# checking for saving is in util
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_epoch_end_or_stepwise(
args,
True,
accelerator,
src_path,
save_stable_diffusion_format,
use_safetensors,
save_dtype,
epoch,
num_train_epochs,
global_step,
unwrap_model(text_encoder),
unwrap_model(unet),
vae,
)
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
is_main_process = accelerator.is_main_process
if is_main_process:
unet = unwrap_model(unet)
text_encoder = unwrap_model(text_encoder)
accelerator.end_training()
if args.save_state and is_main_process:
train_util.save_state_on_train_end(args, accelerator)
del accelerator # この後メモリを使うのでこれは消す
if is_main_process:
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
train_util.save_sd_model_on_train_end(
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
)
print("model saved.")
def setup_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
train_util.add_sd_models_arguments(parser)
train_util.add_dataset_arguments(parser, True, False, True)
train_util.add_training_arguments(parser, True)
train_util.add_sd_saving_arguments(parser)
train_util.add_optimizer_arguments(parser)
config_util.add_config_arguments(parser)
custom_train_functions.add_custom_train_arguments(parser)
parser.add_argument(
"--no_token_padding",
action="store_true",
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にするDiffusers版DreamBoothと同じ動作",
)
parser.add_argument(
"--stop_text_encoder_training",
type=int,
default=None,
help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない",
)
parser.add_argument(
"--sample_first",
action="store_true",
help="Sample first interval before training",
default=False
)
parser.add_argument(
"--name_replace",
type=str,
help="Replaces [name] in prompts. Used is sampling, training, and regs",
default=None
)
parser.add_argument(
"--train_noise_seed",
type=int,
help="Use custom seed for training noise",
default=None
)
parser.add_argument(
"--sample_only",
action="store_true",
help="Only generate samples. Used for generating training data with specific seeds to alter during training",
default=False
)
parser.add_argument(
"--seed_lock",
action="store_true",
help="Locks the seed to the latent images so the same latent will always have the same noise",
default=False
)
return parser
if __name__ == "__main__":
parser = setup_parser()
args = parser.parse_args()
args = train_util.read_config_from_file(args, parser)
train(args)

View File

@@ -1,8 +1,7 @@
from jobs import BaseJob
from toolkit.config import get_config
def get_job(config_path) -> BaseJob:
def get_job(config_path):
config = get_config(config_path)
if not config['job']:
raise ValueError('config file is invalid. Missing "job" key')
@@ -11,8 +10,8 @@ def get_job(config_path) -> BaseJob:
if job == 'extract':
from jobs import ExtractJob
return ExtractJob(config)
elif job == 'train':
from jobs import TrainJob
return TrainJob(config)
# elif job == 'train':
# from jobs import TrainJob
# return TrainJob(config)
else:
raise ValueError(f'Unknown job type {job}')

View File

@@ -2,3 +2,4 @@ import os
TOOLKIT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
CONFIG_ROOT = os.path.join(TOOLKIT_ROOT, 'config')
SD_SCRIPTS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories", "sd-scripts")

361
toolkit/train_tools.py Normal file
View File

@@ -0,0 +1,361 @@
import argparse
import json
import os
import time
from diffusers import (
StableDiffusionPipeline,
DDPMScheduler,
EulerAncestralDiscreteScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
LMSDiscreteScheduler,
PNDMScheduler,
DDIMScheduler,
EulerDiscreteScheduler,
HeunDiscreteScheduler,
KDPM2DiscreteScheduler,
KDPM2AncestralDiscreteScheduler,
)
from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline
import torch
import re
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"
def replace_filewords_prompt(prompt, args: argparse.Namespace):
# if name_replace attr in args (may not be)
if hasattr(args, "name_replace") and args.name_replace is not None:
# replace [name] to args.name_replace
prompt = prompt.replace("[name]", args.name_replace)
if hasattr(args, "prepend") and args.prepend is not None:
# prepend to every item in prompt file
prompt = args.prepend + ' ' + prompt
if hasattr(args, "append") and args.append is not None:
# append to every item in prompt file
prompt = prompt + ' ' + args.append
return prompt
def replace_filewords_in_dataset_group(dataset_group, args: argparse.Namespace):
# if name_replace attr in args (may not be)
if hasattr(args, "name_replace") and args.name_replace is not None:
if not len(dataset_group.image_data) > 0:
# throw error
raise ValueError("dataset_group.image_data is empty")
for key in dataset_group.image_data:
dataset_group.image_data[key].caption = dataset_group.image_data[key].caption.replace(
"[name]", args.name_replace)
return dataset_group
def get_seeds_from_latents(latents):
# latents shape = (batch_size, 4, height, width)
# for speed we only use 8x8 slice of the first channel
seeds = []
# split batch up
for i in range(latents.shape[0]):
# use only first channel, multiply by 255 and convert to int
tensor = latents[i, 0, :, :] * 255.0 # shape = (height, width)
# slice 8x8
tensor = tensor[:8, :8]
# clip to 0-255
tensor = torch.clamp(tensor, 0, 255)
# convert to 8bit int
tensor = tensor.to(torch.uint8)
# convert to bytes
tensor_bytes = tensor.cpu().numpy().tobytes()
# hash
hash_object = hashlib.sha256(tensor_bytes)
# get hex
hex_dig = hash_object.hexdigest()
# convert to int
seed = int(hex_dig, 16) % (2 ** 32)
# append
seeds.append(seed)
return seeds
def get_noise_from_latents(latents):
seed_list = get_seeds_from_latents(latents)
noise = []
for seed in seed_list:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
noise.append(torch.randn_like(latents[0]))
return torch.stack(noise)
# mix 0 is completely noise mean, mix 1 is completely target mean
def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None):
dim = dim or (1, 2, 3)
# reduce mean of noise on dim 2, 3, keeping 0 and 1 intact
noise_mean = noise.mean(dim=dim, keepdim=True)
target_mean = target.mean(dim=dim, keepdim=True)
new_noise_mean = mix * target_mean + (1 - mix) * noise_mean
noise = noise - noise_mean + new_noise_mean
return noise
def sample_images(
accelerator,
args: argparse.Namespace,
epoch,
steps,
device,
vae,
tokenizer,
text_encoder,
unet,
prompt_replacement=None,
force_sample=False
):
"""
StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した
"""
if not force_sample:
if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
return
if args.sample_every_n_epochs is not None:
# sample_every_n_steps は無視する
if epoch is None or epoch % args.sample_every_n_epochs != 0:
return
else:
if steps % args.sample_every_n_steps != 0 or epoch is not None: # steps is not divisible or end of epoch
return
is_sample_only = args.sample_only
is_generating_only = hasattr(args, "is_generating_only") and args.is_generating_only
print(f"\ngenerating sample images at step / サンプル画像生成 ステップ: {steps}")
if not os.path.isfile(args.sample_prompts):
print(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
return
org_vae_device = vae.device # CPUにいるはず
vae.to(device)
# read prompts
# with open(args.sample_prompts, "rt", encoding="utf-8") as f:
# prompts = f.readlines()
if args.sample_prompts.endswith(".txt"):
with open(args.sample_prompts, "r", encoding="utf-8") as f:
lines = f.readlines()
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
elif args.sample_prompts.endswith(".json"):
with open(args.sample_prompts, "r", encoding="utf-8") as f:
prompts = json.load(f)
# schedulerを用意する
sched_init_args = {}
if args.sample_sampler == "ddim":
scheduler_cls = DDIMScheduler
elif args.sample_sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある
scheduler_cls = DDPMScheduler
elif args.sample_sampler == "pndm":
scheduler_cls = PNDMScheduler
elif args.sample_sampler == "lms" or args.sample_sampler == "k_lms":
scheduler_cls = LMSDiscreteScheduler
elif args.sample_sampler == "euler" or args.sample_sampler == "k_euler":
scheduler_cls = EulerDiscreteScheduler
elif args.sample_sampler == "euler_a" or args.sample_sampler == "k_euler_a":
scheduler_cls = EulerAncestralDiscreteScheduler
elif args.sample_sampler == "dpmsolver" or args.sample_sampler == "dpmsolver++":
scheduler_cls = DPMSolverMultistepScheduler
sched_init_args["algorithm_type"] = args.sample_sampler
elif args.sample_sampler == "dpmsingle":
scheduler_cls = DPMSolverSinglestepScheduler
elif args.sample_sampler == "heun":
scheduler_cls = HeunDiscreteScheduler
elif args.sample_sampler == "dpm_2" or args.sample_sampler == "k_dpm_2":
scheduler_cls = KDPM2DiscreteScheduler
elif args.sample_sampler == "dpm_2_a" or args.sample_sampler == "k_dpm_2_a":
scheduler_cls = KDPM2AncestralDiscreteScheduler
else:
scheduler_cls = DDIMScheduler
if args.v_parameterization:
sched_init_args["prediction_type"] = "v_prediction"
scheduler = scheduler_cls(
num_train_timesteps=SCHEDULER_TIMESTEPS,
beta_start=SCHEDULER_LINEAR_START,
beta_end=SCHEDULER_LINEAR_END,
beta_schedule=SCHEDLER_SCHEDULE,
**sched_init_args,
)
# clip_sample=Trueにする
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
# print("set clip_sample to True")
scheduler.config.clip_sample = True
pipeline = StableDiffusionLongPromptWeightingPipeline(
text_encoder=text_encoder,
vae=vae,
unet=unet,
tokenizer=tokenizer,
scheduler=scheduler,
clip_skip=args.clip_skip,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
pipeline.to(device)
if is_generating_only:
save_dir = args.output_dir
else:
save_dir = args.output_dir + "/sample"
os.makedirs(save_dir, exist_ok=True)
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
with torch.no_grad():
with accelerator.autocast():
for i, prompt in enumerate(prompts):
if not accelerator.is_main_process:
continue
if isinstance(prompt, dict):
negative_prompt = prompt.get("negative_prompt")
sample_steps = prompt.get("sample_steps", 30)
width = prompt.get("width", 512)
height = prompt.get("height", 512)
scale = prompt.get("scale", 7.5)
seed = prompt.get("seed")
prompt = prompt.get("prompt")
prompt = replace_filewords_prompt(prompt, args)
negative_prompt = replace_filewords_prompt(negative_prompt, args)
else:
prompt = replace_filewords_prompt(prompt, args)
# prompt = prompt.strip()
# if len(prompt) == 0 or prompt[0] == "#":
# continue
# subset of gen_img_diffusers
prompt_args = prompt.split(" --")
prompt = prompt_args[0]
negative_prompt = None
sample_steps = 30
width = height = 512
scale = 7.5
seed = None
for parg in prompt_args:
try:
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
if m:
width = int(m.group(1))
continue
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
if m:
height = int(m.group(1))
continue
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
if m:
seed = int(m.group(1))
continue
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
if m: # steps
sample_steps = max(1, min(1000, int(m.group(1))))
continue
m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
if m: # scale
scale = float(m.group(1))
continue
m = re.match(r"n (.+)", parg, re.IGNORECASE)
if m: # negative prompt
negative_prompt = m.group(1)
continue
except ValueError as ex:
print(f"Exception in parsing / 解析エラー: {parg}")
print(ex)
if seed is not None:
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
if prompt_replacement is not None:
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
if negative_prompt is not None:
negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])
height = max(64, height - height % 8) # round to divisible by 8
width = max(64, width - width % 8) # round to divisible by 8
print(f"prompt: {prompt}")
print(f"negative_prompt: {negative_prompt}")
print(f"height: {height}")
print(f"width: {width}")
print(f"sample_steps: {sample_steps}")
print(f"scale: {scale}")
image = pipeline(
prompt=prompt,
height=height,
width=width,
num_inference_steps=sample_steps,
guidance_scale=scale,
negative_prompt=negative_prompt,
).images[0]
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
seed_suffix = "" if seed is None else f"_{seed}"
if is_generating_only:
img_filename = (
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{num_suffix}_{i:02d}{seed_suffix}.png"
)
else:
img_filename = (
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{i:04d}{seed_suffix}.png"
)
if is_sample_only:
# make prompt txt file
img_path_no_ext = os.path.join(save_dir, img_filename[:-4])
with open(img_path_no_ext + ".txt", "w") as f:
# put prompt in txt file
f.write(prompt)
# close file
f.close()
image.save(os.path.join(save_dir, img_filename))
# wandb有効時のみログを送信
try:
wandb_tracker = accelerator.get_tracker("wandb")
try:
import wandb
except ImportError: # 事前に一度確認するのでここはエラー出ないはず
raise ImportError("No wandb / wandb がインストールされていないようです")
wandb_tracker.log({f"sample_{i}": wandb.Image(image)})
except: # wandb 無効時
pass
# clear pipeline and cache to reduce vram usage
del pipeline
torch.cuda.empty_cache()
torch.set_rng_state(rng_state)
if cuda_rng_state is not None:
torch.cuda.set_rng_state(cuda_rng_state)
vae.to(org_vae_device)