mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
WIP implementing training
This commit is contained in:
@@ -10,17 +10,25 @@ a general understanding of python, pip, pytorch, and using virtual environments:
|
||||
Linux:
|
||||
|
||||
```bash
|
||||
git submodule update --init --recursive
|
||||
pythion3 -m venv venv
|
||||
source venv/bin/activate
|
||||
pip install -r requirements.txt
|
||||
cd requirements/sd-scripts
|
||||
pip install --no-deps -e .
|
||||
cd ../..
|
||||
```
|
||||
|
||||
Windows:
|
||||
|
||||
```bash
|
||||
git submodule update --init --recursive
|
||||
pythion3 -m venv venv
|
||||
venv\Scripts\activate
|
||||
pip install -r requirements.txt
|
||||
cd requirements/sd-scripts
|
||||
pip install --no-deps -e .
|
||||
cd ../..
|
||||
```
|
||||
|
||||
## Current Tools
|
||||
|
||||
@@ -5,7 +5,11 @@
|
||||
"base_model": "/path/to/base/model",
|
||||
"training_folder": "/path/to/output/folder",
|
||||
"is_v2": false,
|
||||
"device": "cpu",
|
||||
"device": "cuda",
|
||||
"gradient_accumulation_steps": 1,
|
||||
"mixed_precision": "fp16",
|
||||
"logging_dir": "/path/to/tensorboard/log/folder",
|
||||
|
||||
"process": [
|
||||
{
|
||||
"type": "fine_tune"
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import importlib
|
||||
from collections import OrderedDict
|
||||
from typing import List
|
||||
|
||||
@@ -48,6 +49,8 @@ class BaseJob:
|
||||
if len(self.config['process']) == 0:
|
||||
raise ValueError('config file is invalid. "config.process" must be a list of processes')
|
||||
|
||||
module = importlib.import_module('jobs.process')
|
||||
|
||||
# add the processes
|
||||
self.process = []
|
||||
for i, process in enumerate(self.config['process']):
|
||||
@@ -56,7 +59,8 @@ class BaseJob:
|
||||
|
||||
# check if dict key is process type
|
||||
if process['type'] in process_dict:
|
||||
self.process.append(process_dict[process['type']](i, self, process))
|
||||
ProcessClass = getattr(module, process_dict[process['type']])
|
||||
self.process.append(ProcessClass(i, self, process))
|
||||
else:
|
||||
raise ValueError(f'config file is invalid. Unknown process type: {process["type"]}')
|
||||
|
||||
|
||||
@@ -1,19 +1,16 @@
|
||||
from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
|
||||
from .BaseJob import BaseJob
|
||||
from collections import OrderedDict
|
||||
from typing import List
|
||||
|
||||
from jobs.process import BaseExtractProcess
|
||||
|
||||
from jobs.process import ExtractLoconProcess
|
||||
from jobs import BaseJob
|
||||
|
||||
process_dict = {
|
||||
'locon': ExtractLoconProcess,
|
||||
'locon': 'ExtractLoconProcess',
|
||||
}
|
||||
|
||||
|
||||
class ExtractJob(BaseJob):
|
||||
process: List[BaseExtractProcess]
|
||||
|
||||
def __init__(self, config: OrderedDict):
|
||||
super().__init__(config)
|
||||
|
||||
123
jobs/TrainJob.py
123
jobs/TrainJob.py
@@ -1,38 +1,85 @@
|
||||
from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
|
||||
from .BaseJob import BaseJob
|
||||
from collections import OrderedDict
|
||||
from typing import List
|
||||
|
||||
from jobs.process import BaseExtractProcess, TrainFineTuneProcess
|
||||
|
||||
process_dict = {
|
||||
'fine_tine': TrainFineTuneProcess
|
||||
}
|
||||
|
||||
|
||||
class TrainJob(BaseJob):
|
||||
process: List[BaseExtractProcess]
|
||||
|
||||
def __init__(self, config: OrderedDict):
|
||||
super().__init__(config)
|
||||
self.base_model_path = self.get_conf('base_model', required=True)
|
||||
self.base_model = None
|
||||
self.training_folder = self.get_conf('training_folder', required=True)
|
||||
self.is_v2 = self.get_conf('is_v2', False)
|
||||
self.device = self.get_conf('device', 'cpu')
|
||||
|
||||
# loads the processes from the config
|
||||
self.load_processes(process_dict)
|
||||
|
||||
def run(self):
|
||||
super().run()
|
||||
# load models
|
||||
print(f"Loading base model for training")
|
||||
print(f" - Loading base model: {self.base_model_path}")
|
||||
self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path)
|
||||
|
||||
print("")
|
||||
print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
|
||||
|
||||
for process in self.process:
|
||||
process.run()
|
||||
# from jobs import BaseJob
|
||||
# from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
|
||||
# from collections import OrderedDict
|
||||
# from typing import List
|
||||
# from jobs.process import BaseExtractProcess, TrainFineTuneProcess
|
||||
# import gc
|
||||
# import time
|
||||
# import argparse
|
||||
# import itertools
|
||||
# import math
|
||||
# import os
|
||||
# from multiprocessing import Value
|
||||
#
|
||||
# from tqdm import tqdm
|
||||
# import torch
|
||||
# from accelerate.utils import set_seed
|
||||
# from accelerate import Accelerator
|
||||
# import diffusers
|
||||
# from diffusers import DDPMScheduler
|
||||
#
|
||||
# from toolkit.paths import SD_SCRIPTS_ROOT
|
||||
#
|
||||
# import sys
|
||||
#
|
||||
# sys.path.append(SD_SCRIPTS_ROOT)
|
||||
#
|
||||
# import library.train_util as train_util
|
||||
# import library.config_util as config_util
|
||||
# from library.config_util import (
|
||||
# ConfigSanitizer,
|
||||
# BlueprintGenerator,
|
||||
# )
|
||||
# import toolkit.train_tools as train_tools
|
||||
# import library.custom_train_functions as custom_train_functions
|
||||
# from library.custom_train_functions import (
|
||||
# apply_snr_weight,
|
||||
# get_weighted_text_embeddings,
|
||||
# prepare_scheduler_for_custom_training,
|
||||
# pyramid_noise_like,
|
||||
# apply_noise_offset,
|
||||
# scale_v_prediction_loss_like_noise_prediction,
|
||||
# )
|
||||
#
|
||||
# process_dict = {
|
||||
# 'fine_tine': 'TrainFineTuneProcess'
|
||||
# }
|
||||
#
|
||||
#
|
||||
# class TrainJob(BaseJob):
|
||||
# process: List[BaseExtractProcess]
|
||||
#
|
||||
# def __init__(self, config: OrderedDict):
|
||||
# super().__init__(config)
|
||||
# self.base_model_path = self.get_conf('base_model', required=True)
|
||||
# self.base_model = None
|
||||
# self.training_folder = self.get_conf('training_folder', required=True)
|
||||
# self.is_v2 = self.get_conf('is_v2', False)
|
||||
# self.device = self.get_conf('device', 'cpu')
|
||||
# self.gradient_accumulation_steps = self.get_conf('gradient_accumulation_steps', 1)
|
||||
# self.mixed_precision = self.get_conf('mixed_precision', False) # fp16
|
||||
# self.logging_dir = self.get_conf('logging_dir', None)
|
||||
#
|
||||
# # loads the processes from the config
|
||||
# self.load_processes(process_dict)
|
||||
#
|
||||
# # setup accelerator
|
||||
# self.accelerator = Accelerator(
|
||||
# gradient_accumulation_steps=self.gradient_accumulation_steps,
|
||||
# mixed_precision=self.mixed_precision,
|
||||
# log_with=None if self.logging_dir is None else 'tensorboard',
|
||||
# logging_dir=self.logging_dir,
|
||||
# )
|
||||
#
|
||||
# def run(self):
|
||||
# super().run()
|
||||
# # load models
|
||||
# print(f"Loading base model for training")
|
||||
# print(f" - Loading base model: {self.base_model_path}")
|
||||
# self.base_model = load_models_from_stable_diffusion_checkpoint(self.is_v2, self.base_model_path)
|
||||
#
|
||||
# print("")
|
||||
# print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
|
||||
#
|
||||
# for process in self.process:
|
||||
# process.run()
|
||||
|
||||
@@ -1,3 +1,2 @@
|
||||
from .BaseJob import BaseJob
|
||||
from .ExtractJob import ExtractJob
|
||||
from .TrainJob import TrainJob
|
||||
|
||||
@@ -3,13 +3,13 @@ from collections import OrderedDict
|
||||
|
||||
from safetensors.torch import save_file
|
||||
|
||||
from jobs import ExtractJob
|
||||
from jobs.process.BaseProcess import BaseProcess
|
||||
from toolkit.metadata import get_meta_for_safetensors
|
||||
|
||||
from typing import ForwardRef
|
||||
|
||||
|
||||
class BaseExtractProcess(BaseProcess):
|
||||
job: ExtractJob
|
||||
process_id: int
|
||||
config: OrderedDict
|
||||
output_folder: str
|
||||
@@ -19,7 +19,7 @@ class BaseExtractProcess(BaseProcess):
|
||||
def __init__(
|
||||
self,
|
||||
process_id: int,
|
||||
job: ExtractJob,
|
||||
job,
|
||||
config: OrderedDict
|
||||
):
|
||||
super().__init__(process_id, job, config)
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
import copy
|
||||
import json
|
||||
from collections import OrderedDict
|
||||
|
||||
from jobs import BaseJob
|
||||
from typing import ForwardRef
|
||||
|
||||
|
||||
class BaseProcess:
|
||||
@@ -11,7 +10,7 @@ class BaseProcess:
|
||||
def __init__(
|
||||
self,
|
||||
process_id: int,
|
||||
job: BaseJob,
|
||||
job: 'BaseJob',
|
||||
config: OrderedDict
|
||||
):
|
||||
self.process_id = process_id
|
||||
@@ -40,3 +39,5 @@ class BaseProcess:
|
||||
def add_meta(self, additional_meta: OrderedDict):
|
||||
self.meta.update(additional_meta)
|
||||
|
||||
|
||||
from jobs import BaseJob
|
||||
|
||||
@@ -1,17 +1,15 @@
|
||||
from collections import OrderedDict
|
||||
from jobs import TrainJob
|
||||
from jobs.process.BaseProcess import BaseProcess
|
||||
|
||||
|
||||
class BaseTrainProcess(BaseProcess):
|
||||
job: TrainJob
|
||||
process_id: int
|
||||
config: OrderedDict
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
process_id: int,
|
||||
job: TrainJob,
|
||||
job,
|
||||
config: OrderedDict
|
||||
):
|
||||
super().__init__(process_id, job, config)
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
from collections import OrderedDict
|
||||
from toolkit.lycoris_utils import extract_diff
|
||||
from .BaseExtractProcess import BaseExtractProcess
|
||||
from .. import ExtractJob
|
||||
|
||||
mode_dict = {
|
||||
'fixed': {
|
||||
@@ -28,7 +27,7 @@ mode_dict = {
|
||||
|
||||
|
||||
class ExtractLoconProcess(BaseExtractProcess):
|
||||
def __init__(self, process_id: int, job: ExtractJob, config: OrderedDict):
|
||||
def __init__(self, process_id: int, job, config: OrderedDict):
|
||||
super().__init__(process_id, job, config)
|
||||
self.mode = self.get_conf('mode', 'fixed')
|
||||
self.use_sparse_bias = self.get_conf('use_sparse_bias', False)
|
||||
|
||||
@@ -3,4 +3,5 @@ safetensors
|
||||
diffusers
|
||||
transformers
|
||||
lycoris_lora
|
||||
flatten_json
|
||||
flatten_json
|
||||
accelerator
|
||||
|
||||
6
run.py
6
run.py
@@ -1,9 +1,5 @@
|
||||
import os
|
||||
import sys
|
||||
from collections import OrderedDict
|
||||
|
||||
from jobs import BaseJob
|
||||
|
||||
sys.path.insert(0, os.getcwd())
|
||||
import argparse
|
||||
from toolkit.job import get_job
|
||||
@@ -49,6 +45,8 @@ def main():
|
||||
jobs_completed = 0
|
||||
jobs_failed = 0
|
||||
|
||||
print(f"Running {len(config_file_list)} job{'' if len(config_file_list) == 1 else 's'}")
|
||||
|
||||
for config_file in config_file_list:
|
||||
try:
|
||||
job = get_job(config_file)
|
||||
|
||||
547
scripts/train_dreambooth.py
Normal file
547
scripts/train_dreambooth.py
Normal file
@@ -0,0 +1,547 @@
|
||||
import gc
|
||||
import time
|
||||
import argparse
|
||||
import itertools
|
||||
import math
|
||||
import os
|
||||
from multiprocessing import Value
|
||||
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
from accelerate.utils import set_seed
|
||||
import diffusers
|
||||
from diffusers import DDPMScheduler
|
||||
|
||||
import library.train_util as train_util
|
||||
import library.config_util as config_util
|
||||
from library.config_util import (
|
||||
ConfigSanitizer,
|
||||
BlueprintGenerator,
|
||||
)
|
||||
import custom_tools.train_tools as train_tools
|
||||
import library.custom_train_functions as custom_train_functions
|
||||
from library.custom_train_functions import (
|
||||
apply_snr_weight,
|
||||
get_weighted_text_embeddings,
|
||||
prepare_scheduler_for_custom_training,
|
||||
pyramid_noise_like,
|
||||
apply_noise_offset,
|
||||
scale_v_prediction_loss_like_noise_prediction,
|
||||
)
|
||||
|
||||
# perlin_noise,
|
||||
|
||||
PROJECT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
SD_SCRIPTS_ROOT = os.path.join(PROJECT_ROOT, "repositories", "sd-scripts")
|
||||
|
||||
|
||||
def train(args):
|
||||
train_util.verify_training_args(args)
|
||||
train_util.prepare_dataset_args(args, False)
|
||||
|
||||
cache_latents = args.cache_latents
|
||||
|
||||
if args.seed is not None:
|
||||
set_seed(args.seed) # 乱数系列を初期化する
|
||||
|
||||
tokenizer = train_util.load_tokenizer(args)
|
||||
|
||||
# データセットを準備する
|
||||
if args.dataset_class is None:
|
||||
blueprint_generator = BlueprintGenerator(ConfigSanitizer(True, False, True))
|
||||
if args.dataset_config is not None:
|
||||
print(f"Load dataset config from {args.dataset_config}")
|
||||
user_config = config_util.load_user_config(args.dataset_config)
|
||||
ignored = ["train_data_dir", "reg_data_dir"]
|
||||
if any(getattr(args, attr) is not None for attr in ignored):
|
||||
print(
|
||||
"ignore following options because config file is found: {0} / 設定ファイルが利用されるため以下のオプションは無視されます: {0}".format(
|
||||
", ".join(ignored)
|
||||
)
|
||||
)
|
||||
else:
|
||||
user_config = {
|
||||
"datasets": [
|
||||
{"subsets": config_util.generate_dreambooth_subsets_config_by_subdirs(args.train_data_dir, args.reg_data_dir)}
|
||||
]
|
||||
}
|
||||
|
||||
blueprint = blueprint_generator.generate(user_config, args, tokenizer=tokenizer)
|
||||
train_dataset_group = config_util.generate_dataset_group_by_blueprint(blueprint.dataset_group)
|
||||
else:
|
||||
train_dataset_group = train_util.load_arbitrary_dataset(args, tokenizer)
|
||||
|
||||
current_epoch = Value("i", 0)
|
||||
current_step = Value("i", 0)
|
||||
ds_for_collater = train_dataset_group if args.max_data_loader_n_workers == 0 else None
|
||||
collater = train_util.collater_class(current_epoch, current_step, ds_for_collater)
|
||||
|
||||
if args.no_token_padding:
|
||||
train_dataset_group.disable_token_padding()
|
||||
|
||||
if args.debug_dataset:
|
||||
train_util.debug_dataset(train_dataset_group)
|
||||
return
|
||||
|
||||
if cache_latents:
|
||||
assert (
|
||||
train_dataset_group.is_latent_cacheable()
|
||||
), "when caching latents, either color_aug or random_crop cannot be used / latentをキャッシュするときはcolor_augとrandom_cropは使えません"
|
||||
|
||||
# replace captions with names
|
||||
if args.name_replace is not None:
|
||||
print(f"Replacing captions [name] with '{args.name_replace}'")
|
||||
|
||||
train_dataset_group = train_tools.replace_filewords_in_dataset_group(
|
||||
train_dataset_group, args
|
||||
)
|
||||
|
||||
# acceleratorを準備する
|
||||
print("prepare accelerator")
|
||||
|
||||
if args.gradient_accumulation_steps > 1:
|
||||
print(
|
||||
f"gradient_accumulation_steps is {args.gradient_accumulation_steps}. accelerate does not support gradient_accumulation_steps when training multiple models (U-Net and Text Encoder), so something might be wrong"
|
||||
)
|
||||
print(
|
||||
f"gradient_accumulation_stepsが{args.gradient_accumulation_steps}に設定されています。accelerateは複数モデル(U-NetおよびText Encoder)の学習時にgradient_accumulation_stepsをサポートしていないため結果は未知数です"
|
||||
)
|
||||
|
||||
accelerator, unwrap_model = train_util.prepare_accelerator(args)
|
||||
|
||||
# mixed precisionに対応した型を用意しておき適宜castする
|
||||
weight_dtype, save_dtype = train_util.prepare_dtype(args)
|
||||
|
||||
# モデルを読み込む
|
||||
text_encoder, vae, unet, load_stable_diffusion_format = train_util.load_target_model(args, weight_dtype, accelerator)
|
||||
|
||||
# verify load/save model formats
|
||||
if load_stable_diffusion_format:
|
||||
src_stable_diffusion_ckpt = args.pretrained_model_name_or_path
|
||||
src_diffusers_model_path = None
|
||||
else:
|
||||
src_stable_diffusion_ckpt = None
|
||||
src_diffusers_model_path = args.pretrained_model_name_or_path
|
||||
|
||||
if args.save_model_as is None:
|
||||
save_stable_diffusion_format = load_stable_diffusion_format
|
||||
use_safetensors = args.use_safetensors
|
||||
else:
|
||||
save_stable_diffusion_format = args.save_model_as.lower() == "ckpt" or args.save_model_as.lower() == "safetensors"
|
||||
use_safetensors = args.use_safetensors or ("safetensors" in args.save_model_as.lower())
|
||||
|
||||
# モデルに xformers とか memory efficient attention を組み込む
|
||||
train_util.replace_unet_modules(unet, args.mem_eff_attn, args.xformers)
|
||||
|
||||
# 学習を準備する
|
||||
if cache_latents:
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
with torch.no_grad():
|
||||
train_dataset_group.cache_latents(vae, args.vae_batch_size, args.cache_latents_to_disk, accelerator.is_main_process)
|
||||
vae.to("cpu")
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
# 学習を準備する:モデルを適切な状態にする
|
||||
train_text_encoder = args.stop_text_encoder_training is None or args.stop_text_encoder_training >= 0
|
||||
unet.requires_grad_(True) # 念のため追加
|
||||
text_encoder.requires_grad_(train_text_encoder)
|
||||
if not train_text_encoder:
|
||||
print("Text Encoder is not trained.")
|
||||
|
||||
if args.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
text_encoder.gradient_checkpointing_enable()
|
||||
|
||||
if not cache_latents:
|
||||
vae.requires_grad_(False)
|
||||
vae.eval()
|
||||
vae.to(accelerator.device, dtype=weight_dtype)
|
||||
|
||||
# 学習に必要なクラスを準備する
|
||||
print("prepare optimizer, data loader etc.")
|
||||
if train_text_encoder:
|
||||
trainable_params = itertools.chain(unet.parameters(), text_encoder.parameters())
|
||||
else:
|
||||
trainable_params = unet.parameters()
|
||||
|
||||
_, _, optimizer = train_util.get_optimizer(args, trainable_params)
|
||||
|
||||
# dataloaderを準備する
|
||||
# DataLoaderのプロセス数:0はメインプロセスになる
|
||||
n_workers = min(args.max_data_loader_n_workers, os.cpu_count() - 1) # cpu_count-1 ただし最大で指定された数まで
|
||||
train_dataloader = torch.utils.data.DataLoader(
|
||||
train_dataset_group,
|
||||
batch_size=1,
|
||||
shuffle=True,
|
||||
collate_fn=collater,
|
||||
num_workers=n_workers,
|
||||
persistent_workers=args.persistent_data_loader_workers,
|
||||
)
|
||||
|
||||
# 学習ステップ数を計算する
|
||||
if args.max_train_epochs is not None:
|
||||
args.max_train_steps = args.max_train_epochs * math.ceil(
|
||||
len(train_dataloader) / accelerator.num_processes / args.gradient_accumulation_steps
|
||||
)
|
||||
print(f"override steps. steps for {args.max_train_epochs} epochs is / 指定エポックまでのステップ数: {args.max_train_steps}")
|
||||
|
||||
# データセット側にも学習ステップを送信
|
||||
train_dataset_group.set_max_train_steps(args.max_train_steps)
|
||||
|
||||
if args.stop_text_encoder_training is None:
|
||||
args.stop_text_encoder_training = args.max_train_steps + 1 # do not stop until end
|
||||
|
||||
# lr schedulerを用意する TODO gradient_accumulation_stepsの扱いが何かおかしいかもしれない。後で確認する
|
||||
lr_scheduler = train_util.get_scheduler_fix(args, optimizer, accelerator.num_processes)
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う モデル全体をfp16にする
|
||||
if args.full_fp16:
|
||||
assert (
|
||||
args.mixed_precision == "fp16"
|
||||
), "full_fp16 requires mixed precision='fp16' / full_fp16を使う場合はmixed_precision='fp16'を指定してください。"
|
||||
print("enable full fp16 training.")
|
||||
unet.to(weight_dtype)
|
||||
text_encoder.to(weight_dtype)
|
||||
|
||||
# acceleratorがなんかよろしくやってくれるらしい
|
||||
if train_text_encoder:
|
||||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
||||
unet, text_encoder, optimizer, train_dataloader, lr_scheduler
|
||||
)
|
||||
else:
|
||||
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(unet, optimizer, train_dataloader, lr_scheduler)
|
||||
|
||||
# transform DDP after prepare
|
||||
text_encoder, unet = train_util.transform_if_model_is_DDP(text_encoder, unet)
|
||||
|
||||
if not train_text_encoder:
|
||||
text_encoder.to(accelerator.device, dtype=weight_dtype) # to avoid 'cpu' vs 'cuda' error
|
||||
|
||||
# 実験的機能:勾配も含めたfp16学習を行う PyTorchにパッチを当ててfp16でのgrad scaleを有効にする
|
||||
if args.full_fp16:
|
||||
train_util.patch_accelerator_for_fp16_training(accelerator)
|
||||
|
||||
# resumeする
|
||||
train_util.resume_from_local_or_hf_if_specified(accelerator, args)
|
||||
|
||||
# epoch数を計算する
|
||||
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
||||
num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
||||
if (args.save_n_epoch_ratio is not None) and (args.save_n_epoch_ratio > 0):
|
||||
args.save_every_n_epochs = math.floor(num_train_epochs / args.save_n_epoch_ratio) or 1
|
||||
|
||||
# 学習する
|
||||
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
||||
print("running training / 学習開始")
|
||||
print(f" num train images * repeats / 学習画像の数×繰り返し回数: {train_dataset_group.num_train_images}")
|
||||
print(f" num reg images / 正則化画像の数: {train_dataset_group.num_reg_images}")
|
||||
print(f" num batches per epoch / 1epochのバッチ数: {len(train_dataloader)}")
|
||||
print(f" num epochs / epoch数: {num_train_epochs}")
|
||||
print(f" batch size per device / バッチサイズ: {args.train_batch_size}")
|
||||
print(f" total train batch size (with parallel & distributed & accumulation) / 総バッチサイズ(並列学習、勾配合計含む): {total_batch_size}")
|
||||
print(f" gradient ccumulation steps / 勾配を合計するステップ数 = {args.gradient_accumulation_steps}")
|
||||
print(f" total optimization steps / 学習ステップ数: {args.max_train_steps}")
|
||||
|
||||
progress_bar = tqdm(range(args.max_train_steps), smoothing=0, disable=not accelerator.is_local_main_process, desc="steps")
|
||||
global_step = 0
|
||||
|
||||
noise_scheduler = DDPMScheduler(
|
||||
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000, clip_sample=False
|
||||
)
|
||||
prepare_scheduler_for_custom_training(noise_scheduler, accelerator.device)
|
||||
|
||||
if accelerator.is_main_process:
|
||||
accelerator.init_trackers("dreambooth" if args.log_tracker_name is None else args.log_tracker_name)
|
||||
|
||||
if args.sample_first or args.sample_only:
|
||||
# Do initial sample before starting training
|
||||
train_tools.sample_images(accelerator, args, 0, global_step, accelerator.device, vae, tokenizer,
|
||||
text_encoder, unet, force_sample=True)
|
||||
|
||||
if args.sample_only:
|
||||
return
|
||||
loss_list = []
|
||||
loss_total = 0.0
|
||||
for epoch in range(num_train_epochs):
|
||||
print(f"\nepoch {epoch+1}/{num_train_epochs}")
|
||||
current_epoch.value = epoch + 1
|
||||
|
||||
# 指定したステップ数までText Encoderを学習する:epoch最初の状態
|
||||
unet.train()
|
||||
# train==True is required to enable gradient_checkpointing
|
||||
if args.gradient_checkpointing or global_step < args.stop_text_encoder_training:
|
||||
text_encoder.train()
|
||||
|
||||
for step, batch in enumerate(train_dataloader):
|
||||
current_step.value = global_step
|
||||
# 指定したステップ数でText Encoderの学習を止める
|
||||
if global_step == args.stop_text_encoder_training:
|
||||
print(f"stop text encoder training at step {global_step}")
|
||||
if not args.gradient_checkpointing:
|
||||
text_encoder.train(False)
|
||||
text_encoder.requires_grad_(False)
|
||||
|
||||
with accelerator.accumulate(unet):
|
||||
with torch.no_grad():
|
||||
# latentに変換
|
||||
if cache_latents:
|
||||
latents = batch["latents"].to(accelerator.device)
|
||||
else:
|
||||
latents = vae.encode(batch["images"].to(dtype=weight_dtype)).latent_dist.sample()
|
||||
latents = latents * 0.18215
|
||||
b_size = latents.shape[0]
|
||||
|
||||
# Sample noise that we'll add to the latents
|
||||
if args.train_noise_seed is not None:
|
||||
torch.manual_seed(args.train_noise_seed)
|
||||
torch.cuda.manual_seed(args.train_noise_seed)
|
||||
# make same seed for each item in the batch by stacking them
|
||||
single_noise = torch.randn_like(latents[0])
|
||||
noise = torch.stack([single_noise for _ in range(b_size)])
|
||||
noise = noise.to(latents.device)
|
||||
elif args.seed_lock:
|
||||
noise = train_tools.get_noise_from_latents(latents)
|
||||
else:
|
||||
noise = torch.randn_like(latents, device=latents.device)
|
||||
|
||||
if args.noise_offset:
|
||||
noise = apply_noise_offset(latents, noise, args.noise_offset, args.adaptive_noise_scale)
|
||||
elif args.multires_noise_iterations:
|
||||
noise = pyramid_noise_like(noise, latents.device, args.multires_noise_iterations, args.multires_noise_discount)
|
||||
# elif args.perlin_noise:
|
||||
# noise = perlin_noise(noise, latents.device, args.perlin_noise) # only shape of noise is used currently
|
||||
|
||||
# Get the text embedding for conditioning
|
||||
with torch.set_grad_enabled(global_step < args.stop_text_encoder_training):
|
||||
if args.weighted_captions:
|
||||
encoder_hidden_states = get_weighted_text_embeddings(
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
batch["captions"],
|
||||
accelerator.device,
|
||||
args.max_token_length // 75 if args.max_token_length else 1,
|
||||
clip_skip=args.clip_skip,
|
||||
)
|
||||
else:
|
||||
input_ids = batch["input_ids"].to(accelerator.device)
|
||||
encoder_hidden_states = train_util.get_hidden_states(
|
||||
args, input_ids, tokenizer, text_encoder, None if not args.full_fp16 else weight_dtype
|
||||
)
|
||||
|
||||
# Sample a random timestep for each image
|
||||
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (b_size,), device=latents.device)
|
||||
timesteps = timesteps.long()
|
||||
|
||||
# Add noise to the latents according to the noise magnitude at each timestep
|
||||
# (this is the forward diffusion process)
|
||||
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
||||
|
||||
# Predict the noise residual
|
||||
with accelerator.autocast():
|
||||
noise_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
||||
|
||||
if args.v_parameterization:
|
||||
# v-parameterization training
|
||||
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
||||
else:
|
||||
target = noise
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float(), reduction="none")
|
||||
loss = loss.mean([1, 2, 3])
|
||||
|
||||
loss_weights = batch["loss_weights"] # 各sampleごとのweight
|
||||
loss = loss * loss_weights
|
||||
|
||||
if args.min_snr_gamma:
|
||||
loss = apply_snr_weight(loss, timesteps, noise_scheduler, args.min_snr_gamma)
|
||||
if args.scale_v_pred_loss_like_noise_pred:
|
||||
loss = scale_v_prediction_loss_like_noise_prediction(loss, timesteps, noise_scheduler)
|
||||
|
||||
loss = loss.mean() # 平均なのでbatch_sizeで割る必要なし
|
||||
|
||||
accelerator.backward(loss)
|
||||
if accelerator.sync_gradients and args.max_grad_norm != 0.0:
|
||||
if train_text_encoder:
|
||||
params_to_clip = itertools.chain(unet.parameters(), text_encoder.parameters())
|
||||
else:
|
||||
params_to_clip = unet.parameters()
|
||||
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
||||
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# Checks if the accelerator has performed an optimization step behind the scenes
|
||||
if accelerator.sync_gradients:
|
||||
progress_bar.update(1)
|
||||
global_step += 1
|
||||
|
||||
train_util.sample_images(
|
||||
accelerator, args, None, global_step, accelerator.device, vae, tokenizer, text_encoder, unet
|
||||
)
|
||||
|
||||
# 指定ステップごとにモデルを保存
|
||||
if args.save_every_n_steps is not None and global_step % args.save_every_n_steps == 0:
|
||||
accelerator.wait_for_everyone()
|
||||
if accelerator.is_main_process:
|
||||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||||
train_util.save_sd_model_on_epoch_end_or_stepwise(
|
||||
args,
|
||||
False,
|
||||
accelerator,
|
||||
src_path,
|
||||
save_stable_diffusion_format,
|
||||
use_safetensors,
|
||||
save_dtype,
|
||||
epoch,
|
||||
num_train_epochs,
|
||||
global_step,
|
||||
unwrap_model(text_encoder),
|
||||
unwrap_model(unet),
|
||||
vae,
|
||||
)
|
||||
|
||||
current_loss = loss.detach().item()
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss": current_loss, "lr": float(lr_scheduler.get_last_lr()[0])}
|
||||
if args.optimizer_type.lower().startswith("DAdapt".lower()) or args.optimizer_type.lower() == "Prodigy".lower(): # tracking d*lr value
|
||||
logs["lr/d*lr"] = (
|
||||
lr_scheduler.optimizers[0].param_groups[0]["d"] * lr_scheduler.optimizers[0].param_groups[0]["lr"]
|
||||
)
|
||||
accelerator.log(logs, step=global_step)
|
||||
|
||||
if epoch == 0:
|
||||
loss_list.append(current_loss)
|
||||
else:
|
||||
loss_total -= loss_list[step]
|
||||
loss_list[step] = current_loss
|
||||
loss_total += current_loss
|
||||
avr_loss = loss_total / len(loss_list)
|
||||
logs = {"loss": avr_loss} # , "lr": lr_scheduler.get_last_lr()[0]}
|
||||
progress_bar.set_postfix(**logs)
|
||||
|
||||
if global_step >= args.max_train_steps:
|
||||
break
|
||||
|
||||
if args.logging_dir is not None:
|
||||
logs = {"loss/epoch": loss_total / len(loss_list)}
|
||||
accelerator.log(logs, step=epoch + 1)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
|
||||
if args.save_every_n_epochs is not None:
|
||||
if accelerator.is_main_process:
|
||||
# checking for saving is in util
|
||||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||||
train_util.save_sd_model_on_epoch_end_or_stepwise(
|
||||
args,
|
||||
True,
|
||||
accelerator,
|
||||
src_path,
|
||||
save_stable_diffusion_format,
|
||||
use_safetensors,
|
||||
save_dtype,
|
||||
epoch,
|
||||
num_train_epochs,
|
||||
global_step,
|
||||
unwrap_model(text_encoder),
|
||||
unwrap_model(unet),
|
||||
vae,
|
||||
)
|
||||
|
||||
train_util.sample_images(accelerator, args, epoch + 1, global_step, accelerator.device, vae, tokenizer, text_encoder, unet)
|
||||
|
||||
is_main_process = accelerator.is_main_process
|
||||
if is_main_process:
|
||||
unet = unwrap_model(unet)
|
||||
text_encoder = unwrap_model(text_encoder)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
if args.save_state and is_main_process:
|
||||
train_util.save_state_on_train_end(args, accelerator)
|
||||
|
||||
del accelerator # この後メモリを使うのでこれは消す
|
||||
|
||||
if is_main_process:
|
||||
src_path = src_stable_diffusion_ckpt if save_stable_diffusion_format else src_diffusers_model_path
|
||||
train_util.save_sd_model_on_train_end(
|
||||
args, src_path, save_stable_diffusion_format, use_safetensors, save_dtype, epoch, global_step, text_encoder, unet, vae
|
||||
)
|
||||
print("model saved.")
|
||||
|
||||
|
||||
def setup_parser() -> argparse.ArgumentParser:
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
train_util.add_sd_models_arguments(parser)
|
||||
train_util.add_dataset_arguments(parser, True, False, True)
|
||||
train_util.add_training_arguments(parser, True)
|
||||
train_util.add_sd_saving_arguments(parser)
|
||||
train_util.add_optimizer_arguments(parser)
|
||||
config_util.add_config_arguments(parser)
|
||||
custom_train_functions.add_custom_train_arguments(parser)
|
||||
|
||||
parser.add_argument(
|
||||
"--no_token_padding",
|
||||
action="store_true",
|
||||
help="disable token padding (same as Diffuser's DreamBooth) / トークンのpaddingを無効にする(Diffusers版DreamBoothと同じ動作)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--stop_text_encoder_training",
|
||||
type=int,
|
||||
default=None,
|
||||
help="steps to stop text encoder training, -1 for no training / Text Encoderの学習を止めるステップ数、-1で最初から学習しない",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample_first",
|
||||
action="store_true",
|
||||
help="Sample first interval before training",
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--name_replace",
|
||||
type=str,
|
||||
help="Replaces [name] in prompts. Used is sampling, training, and regs",
|
||||
default=None
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--train_noise_seed",
|
||||
type=int,
|
||||
help="Use custom seed for training noise",
|
||||
default=None
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--sample_only",
|
||||
action="store_true",
|
||||
help="Only generate samples. Used for generating training data with specific seeds to alter during training",
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--seed_lock",
|
||||
action="store_true",
|
||||
help="Locks the seed to the latent images so the same latent will always have the same noise",
|
||||
default=False
|
||||
)
|
||||
|
||||
return parser
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = setup_parser()
|
||||
|
||||
args = parser.parse_args()
|
||||
args = train_util.read_config_from_file(args, parser)
|
||||
|
||||
train(args)
|
||||
@@ -1,8 +1,7 @@
|
||||
from jobs import BaseJob
|
||||
from toolkit.config import get_config
|
||||
|
||||
|
||||
def get_job(config_path) -> BaseJob:
|
||||
def get_job(config_path):
|
||||
config = get_config(config_path)
|
||||
if not config['job']:
|
||||
raise ValueError('config file is invalid. Missing "job" key')
|
||||
@@ -11,8 +10,8 @@ def get_job(config_path) -> BaseJob:
|
||||
if job == 'extract':
|
||||
from jobs import ExtractJob
|
||||
return ExtractJob(config)
|
||||
elif job == 'train':
|
||||
from jobs import TrainJob
|
||||
return TrainJob(config)
|
||||
# elif job == 'train':
|
||||
# from jobs import TrainJob
|
||||
# return TrainJob(config)
|
||||
else:
|
||||
raise ValueError(f'Unknown job type {job}')
|
||||
|
||||
@@ -2,3 +2,4 @@ import os
|
||||
|
||||
TOOLKIT_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
CONFIG_ROOT = os.path.join(TOOLKIT_ROOT, 'config')
|
||||
SD_SCRIPTS_ROOT = os.path.join(TOOLKIT_ROOT, "repositories", "sd-scripts")
|
||||
|
||||
361
toolkit/train_tools.py
Normal file
361
toolkit/train_tools.py
Normal file
@@ -0,0 +1,361 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
|
||||
from diffusers import (
|
||||
StableDiffusionPipeline,
|
||||
DDPMScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
DPMSolverSinglestepScheduler,
|
||||
LMSDiscreteScheduler,
|
||||
PNDMScheduler,
|
||||
DDIMScheduler,
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
)
|
||||
from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline
|
||||
import torch
|
||||
import re
|
||||
|
||||
SCHEDULER_LINEAR_START = 0.00085
|
||||
SCHEDULER_LINEAR_END = 0.0120
|
||||
SCHEDULER_TIMESTEPS = 1000
|
||||
SCHEDLER_SCHEDULE = "scaled_linear"
|
||||
|
||||
|
||||
def replace_filewords_prompt(prompt, args: argparse.Namespace):
|
||||
# if name_replace attr in args (may not be)
|
||||
if hasattr(args, "name_replace") and args.name_replace is not None:
|
||||
# replace [name] to args.name_replace
|
||||
prompt = prompt.replace("[name]", args.name_replace)
|
||||
if hasattr(args, "prepend") and args.prepend is not None:
|
||||
# prepend to every item in prompt file
|
||||
prompt = args.prepend + ' ' + prompt
|
||||
if hasattr(args, "append") and args.append is not None:
|
||||
# append to every item in prompt file
|
||||
prompt = prompt + ' ' + args.append
|
||||
return prompt
|
||||
|
||||
|
||||
def replace_filewords_in_dataset_group(dataset_group, args: argparse.Namespace):
|
||||
# if name_replace attr in args (may not be)
|
||||
if hasattr(args, "name_replace") and args.name_replace is not None:
|
||||
if not len(dataset_group.image_data) > 0:
|
||||
# throw error
|
||||
raise ValueError("dataset_group.image_data is empty")
|
||||
for key in dataset_group.image_data:
|
||||
dataset_group.image_data[key].caption = dataset_group.image_data[key].caption.replace(
|
||||
"[name]", args.name_replace)
|
||||
|
||||
return dataset_group
|
||||
|
||||
|
||||
def get_seeds_from_latents(latents):
|
||||
# latents shape = (batch_size, 4, height, width)
|
||||
# for speed we only use 8x8 slice of the first channel
|
||||
seeds = []
|
||||
|
||||
# split batch up
|
||||
for i in range(latents.shape[0]):
|
||||
# use only first channel, multiply by 255 and convert to int
|
||||
tensor = latents[i, 0, :, :] * 255.0 # shape = (height, width)
|
||||
# slice 8x8
|
||||
tensor = tensor[:8, :8]
|
||||
# clip to 0-255
|
||||
tensor = torch.clamp(tensor, 0, 255)
|
||||
# convert to 8bit int
|
||||
tensor = tensor.to(torch.uint8)
|
||||
# convert to bytes
|
||||
tensor_bytes = tensor.cpu().numpy().tobytes()
|
||||
# hash
|
||||
hash_object = hashlib.sha256(tensor_bytes)
|
||||
# get hex
|
||||
hex_dig = hash_object.hexdigest()
|
||||
# convert to int
|
||||
seed = int(hex_dig, 16) % (2 ** 32)
|
||||
# append
|
||||
seeds.append(seed)
|
||||
return seeds
|
||||
|
||||
|
||||
def get_noise_from_latents(latents):
|
||||
seed_list = get_seeds_from_latents(latents)
|
||||
noise = []
|
||||
for seed in seed_list:
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
noise.append(torch.randn_like(latents[0]))
|
||||
return torch.stack(noise)
|
||||
|
||||
|
||||
# mix 0 is completely noise mean, mix 1 is completely target mean
|
||||
|
||||
def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None):
|
||||
dim = dim or (1, 2, 3)
|
||||
# reduce mean of noise on dim 2, 3, keeping 0 and 1 intact
|
||||
noise_mean = noise.mean(dim=dim, keepdim=True)
|
||||
target_mean = target.mean(dim=dim, keepdim=True)
|
||||
|
||||
new_noise_mean = mix * target_mean + (1 - mix) * noise_mean
|
||||
|
||||
noise = noise - noise_mean + new_noise_mean
|
||||
return noise
|
||||
|
||||
|
||||
def sample_images(
|
||||
accelerator,
|
||||
args: argparse.Namespace,
|
||||
epoch,
|
||||
steps,
|
||||
device,
|
||||
vae,
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
unet,
|
||||
prompt_replacement=None,
|
||||
force_sample=False
|
||||
):
|
||||
"""
|
||||
StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した
|
||||
"""
|
||||
if not force_sample:
|
||||
if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
|
||||
return
|
||||
if args.sample_every_n_epochs is not None:
|
||||
# sample_every_n_steps は無視する
|
||||
if epoch is None or epoch % args.sample_every_n_epochs != 0:
|
||||
return
|
||||
else:
|
||||
if steps % args.sample_every_n_steps != 0 or epoch is not None: # steps is not divisible or end of epoch
|
||||
return
|
||||
|
||||
is_sample_only = args.sample_only
|
||||
is_generating_only = hasattr(args, "is_generating_only") and args.is_generating_only
|
||||
|
||||
print(f"\ngenerating sample images at step / サンプル画像生成 ステップ: {steps}")
|
||||
if not os.path.isfile(args.sample_prompts):
|
||||
print(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
|
||||
return
|
||||
|
||||
org_vae_device = vae.device # CPUにいるはず
|
||||
vae.to(device)
|
||||
|
||||
# read prompts
|
||||
|
||||
# with open(args.sample_prompts, "rt", encoding="utf-8") as f:
|
||||
# prompts = f.readlines()
|
||||
|
||||
if args.sample_prompts.endswith(".txt"):
|
||||
with open(args.sample_prompts, "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
|
||||
elif args.sample_prompts.endswith(".json"):
|
||||
with open(args.sample_prompts, "r", encoding="utf-8") as f:
|
||||
prompts = json.load(f)
|
||||
|
||||
# schedulerを用意する
|
||||
sched_init_args = {}
|
||||
if args.sample_sampler == "ddim":
|
||||
scheduler_cls = DDIMScheduler
|
||||
elif args.sample_sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある
|
||||
scheduler_cls = DDPMScheduler
|
||||
elif args.sample_sampler == "pndm":
|
||||
scheduler_cls = PNDMScheduler
|
||||
elif args.sample_sampler == "lms" or args.sample_sampler == "k_lms":
|
||||
scheduler_cls = LMSDiscreteScheduler
|
||||
elif args.sample_sampler == "euler" or args.sample_sampler == "k_euler":
|
||||
scheduler_cls = EulerDiscreteScheduler
|
||||
elif args.sample_sampler == "euler_a" or args.sample_sampler == "k_euler_a":
|
||||
scheduler_cls = EulerAncestralDiscreteScheduler
|
||||
elif args.sample_sampler == "dpmsolver" or args.sample_sampler == "dpmsolver++":
|
||||
scheduler_cls = DPMSolverMultistepScheduler
|
||||
sched_init_args["algorithm_type"] = args.sample_sampler
|
||||
elif args.sample_sampler == "dpmsingle":
|
||||
scheduler_cls = DPMSolverSinglestepScheduler
|
||||
elif args.sample_sampler == "heun":
|
||||
scheduler_cls = HeunDiscreteScheduler
|
||||
elif args.sample_sampler == "dpm_2" or args.sample_sampler == "k_dpm_2":
|
||||
scheduler_cls = KDPM2DiscreteScheduler
|
||||
elif args.sample_sampler == "dpm_2_a" or args.sample_sampler == "k_dpm_2_a":
|
||||
scheduler_cls = KDPM2AncestralDiscreteScheduler
|
||||
else:
|
||||
scheduler_cls = DDIMScheduler
|
||||
|
||||
if args.v_parameterization:
|
||||
sched_init_args["prediction_type"] = "v_prediction"
|
||||
|
||||
scheduler = scheduler_cls(
|
||||
num_train_timesteps=SCHEDULER_TIMESTEPS,
|
||||
beta_start=SCHEDULER_LINEAR_START,
|
||||
beta_end=SCHEDULER_LINEAR_END,
|
||||
beta_schedule=SCHEDLER_SCHEDULE,
|
||||
**sched_init_args,
|
||||
)
|
||||
|
||||
# clip_sample=Trueにする
|
||||
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
|
||||
# print("set clip_sample to True")
|
||||
scheduler.config.clip_sample = True
|
||||
|
||||
pipeline = StableDiffusionLongPromptWeightingPipeline(
|
||||
text_encoder=text_encoder,
|
||||
vae=vae,
|
||||
unet=unet,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
clip_skip=args.clip_skip,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
pipeline.to(device)
|
||||
|
||||
if is_generating_only:
|
||||
save_dir = args.output_dir
|
||||
else:
|
||||
save_dir = args.output_dir + "/sample"
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
rng_state = torch.get_rng_state()
|
||||
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
|
||||
|
||||
with torch.no_grad():
|
||||
with accelerator.autocast():
|
||||
for i, prompt in enumerate(prompts):
|
||||
if not accelerator.is_main_process:
|
||||
continue
|
||||
|
||||
if isinstance(prompt, dict):
|
||||
negative_prompt = prompt.get("negative_prompt")
|
||||
sample_steps = prompt.get("sample_steps", 30)
|
||||
width = prompt.get("width", 512)
|
||||
height = prompt.get("height", 512)
|
||||
scale = prompt.get("scale", 7.5)
|
||||
seed = prompt.get("seed")
|
||||
prompt = prompt.get("prompt")
|
||||
|
||||
prompt = replace_filewords_prompt(prompt, args)
|
||||
negative_prompt = replace_filewords_prompt(negative_prompt, args)
|
||||
else:
|
||||
prompt = replace_filewords_prompt(prompt, args)
|
||||
# prompt = prompt.strip()
|
||||
# if len(prompt) == 0 or prompt[0] == "#":
|
||||
# continue
|
||||
|
||||
# subset of gen_img_diffusers
|
||||
prompt_args = prompt.split(" --")
|
||||
prompt = prompt_args[0]
|
||||
negative_prompt = None
|
||||
sample_steps = 30
|
||||
width = height = 512
|
||||
scale = 7.5
|
||||
seed = None
|
||||
for parg in prompt_args:
|
||||
try:
|
||||
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
|
||||
if m:
|
||||
width = int(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
|
||||
if m:
|
||||
height = int(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
|
||||
if m:
|
||||
seed = int(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
|
||||
if m: # steps
|
||||
sample_steps = max(1, min(1000, int(m.group(1))))
|
||||
continue
|
||||
|
||||
m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
|
||||
if m: # scale
|
||||
scale = float(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"n (.+)", parg, re.IGNORECASE)
|
||||
if m: # negative prompt
|
||||
negative_prompt = m.group(1)
|
||||
continue
|
||||
|
||||
except ValueError as ex:
|
||||
print(f"Exception in parsing / 解析エラー: {parg}")
|
||||
print(ex)
|
||||
|
||||
if seed is not None:
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
|
||||
if prompt_replacement is not None:
|
||||
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
|
||||
if negative_prompt is not None:
|
||||
negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])
|
||||
|
||||
height = max(64, height - height % 8) # round to divisible by 8
|
||||
width = max(64, width - width % 8) # round to divisible by 8
|
||||
print(f"prompt: {prompt}")
|
||||
print(f"negative_prompt: {negative_prompt}")
|
||||
print(f"height: {height}")
|
||||
print(f"width: {width}")
|
||||
print(f"sample_steps: {sample_steps}")
|
||||
print(f"scale: {scale}")
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_steps,
|
||||
guidance_scale=scale,
|
||||
negative_prompt=negative_prompt,
|
||||
).images[0]
|
||||
|
||||
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
|
||||
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
|
||||
seed_suffix = "" if seed is None else f"_{seed}"
|
||||
|
||||
if is_generating_only:
|
||||
img_filename = (
|
||||
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{num_suffix}_{i:02d}{seed_suffix}.png"
|
||||
)
|
||||
else:
|
||||
img_filename = (
|
||||
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{i:04d}{seed_suffix}.png"
|
||||
)
|
||||
if is_sample_only:
|
||||
# make prompt txt file
|
||||
img_path_no_ext = os.path.join(save_dir, img_filename[:-4])
|
||||
with open(img_path_no_ext + ".txt", "w") as f:
|
||||
# put prompt in txt file
|
||||
f.write(prompt)
|
||||
# close file
|
||||
f.close()
|
||||
|
||||
image.save(os.path.join(save_dir, img_filename))
|
||||
|
||||
# wandb有効時のみログを送信
|
||||
try:
|
||||
wandb_tracker = accelerator.get_tracker("wandb")
|
||||
try:
|
||||
import wandb
|
||||
except ImportError: # 事前に一度確認するのでここはエラー出ないはず
|
||||
raise ImportError("No wandb / wandb がインストールされていないようです")
|
||||
|
||||
wandb_tracker.log({f"sample_{i}": wandb.Image(image)})
|
||||
except: # wandb 無効時
|
||||
pass
|
||||
|
||||
# clear pipeline and cache to reduce vram usage
|
||||
del pipeline
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
torch.set_rng_state(rng_state)
|
||||
if cuda_rng_state is not None:
|
||||
torch.cuda.set_rng_state(cuda_rng_state)
|
||||
vae.to(org_vae_device)
|
||||
Reference in New Issue
Block a user