mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Add example config for qwen image edit
This commit is contained in:
@@ -39,7 +39,7 @@ config:
|
||||
train:
|
||||
batch_size: 1
|
||||
# caching text embeddings is required for 24GB
|
||||
cache_text_embeddings: false
|
||||
cache_text_embeddings: true
|
||||
|
||||
steps: 2000 # total number of steps to train 500 - 4000 is a good range
|
||||
gradient_accumulation: 1
|
||||
|
||||
102
config/examples/train_lora_qwen_image_edit_32gb.yaml
Normal file
102
config/examples/train_lora_qwen_image_edit_32gb.yaml
Normal file
@@ -0,0 +1,102 @@
|
||||
---
|
||||
job: extension
|
||||
config:
|
||||
# this name will be the folder and filename name
|
||||
name: "my_first_qwen_image_edit_lora_v1"
|
||||
process:
|
||||
- type: 'sd_trainer'
|
||||
# root folder to save training sessions/samples/weights
|
||||
training_folder: "output"
|
||||
# uncomment to see performance stats in the terminal every N steps
|
||||
# performance_log_every: 1000
|
||||
device: cuda:0
|
||||
# if a trigger word is specified, it will be added to captions of training data if it does not already exist
|
||||
# alternatively, in your captions you can add [trigger] and it will be replaced with the trigger word
|
||||
# Trigger words will not work when caching text embeddings
|
||||
# trigger_word: "p3r5on"
|
||||
network:
|
||||
type: "lora"
|
||||
linear: 16
|
||||
linear_alpha: 16
|
||||
save:
|
||||
dtype: float16 # precision to save
|
||||
save_every: 250 # save every this many steps
|
||||
max_step_saves_to_keep: 4 # how many intermittent saves to keep
|
||||
datasets:
|
||||
# datasets are a folder of images. captions need to be txt files with the same name as the image
|
||||
# for instance image2.jpg and image2.txt. Only jpg, jpeg, and png are supported currently
|
||||
# images will automatically be resized and bucketed into the resolution specified
|
||||
# on windows, escape back slashes with another backslash so
|
||||
# "C:\\path\\to\\images\\folder"
|
||||
- folder_path: "/path/to/images/folder"
|
||||
control_path: "/path/to/control/images/folder"
|
||||
caption_ext: "txt"
|
||||
# default_caption: "a person" # if caching text embeddings, if you don't have captions, this will get cached
|
||||
caption_dropout_rate: 0.05 # will drop out the caption 5% of time
|
||||
resolution: [ 512, 768, 1024 ] # qwen image enjoys multiple resolutions
|
||||
train:
|
||||
batch_size: 1
|
||||
# caching text embeddings is required for 32GB
|
||||
cache_text_embeddings: true
|
||||
|
||||
steps: 3000 # total number of steps to train 500 - 4000 is a good range
|
||||
gradient_accumulation: 1
|
||||
timestep_type: "weighted"
|
||||
train_unet: true
|
||||
train_text_encoder: false # probably won't work with qwen image
|
||||
gradient_checkpointing: true # need the on unless you have a ton of vram
|
||||
noise_scheduler: "flowmatch" # for training only
|
||||
optimizer: "adamw8bit"
|
||||
lr: 1e-4
|
||||
# uncomment this to skip the pre training sample
|
||||
# skip_first_sample: true
|
||||
# uncomment to completely disable sampling
|
||||
# disable_sampling: true
|
||||
dtype: bf16
|
||||
model:
|
||||
# huggingface model name or path
|
||||
name_or_path: "Qwen/Qwen-Image-Edit"
|
||||
arch: "qwen_image_edit"
|
||||
quantize: true
|
||||
# qtype_te: "qfloat8" Default float8 qquantization
|
||||
# to use the ARA use the | pipe to point to hf path, or a local path if you have one.
|
||||
# 3bit is required for 32GB
|
||||
qtype: "uint3|qwen_image_edit_torchao_uint3.safetensors"
|
||||
quantize_te: true
|
||||
qtype_te: "qfloat8"
|
||||
low_vram: true
|
||||
sample:
|
||||
sampler: "flowmatch" # must match train.noise_scheduler
|
||||
sample_every: 250 # sample every this many steps
|
||||
width: 1024
|
||||
height: 1024
|
||||
samples:
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
- prompt: "do the thing to it"
|
||||
ctrl_img: "/path/to/control/image.jpg"
|
||||
neg: ""
|
||||
seed: 42
|
||||
walk_seed: true
|
||||
guidance_scale: 3
|
||||
sample_steps: 25
|
||||
# you can add any additional meta info here. [name] is replaced with config name at top
|
||||
meta:
|
||||
name: "[name]"
|
||||
version: '1.0'
|
||||
@@ -1865,7 +1865,9 @@ class TextEmbeddingCachingMixin:
|
||||
self.sd.set_device_state_preset('cache_text_encoder')
|
||||
did_move = True
|
||||
|
||||
if file_item.encode_control_in_text_embeddings and file_item.control_path is not None:
|
||||
if file_item.encode_control_in_text_embeddings:
|
||||
if file_item.control_path is None:
|
||||
raise Exception(f"Could not find a control image for {file_item.path} which is needed for this model")
|
||||
# load the control image and feed it into the text encoder
|
||||
ctrl_img = Image.open(file_item.control_path).convert("RGB")
|
||||
# convert to 0 to 1 tensor
|
||||
|
||||
@@ -1 +1 @@
|
||||
VERSION = "0.5.4"
|
||||
VERSION = "0.5.5"
|
||||
Reference in New Issue
Block a user