|
|
|
|
@@ -1,541 +0,0 @@
|
|
|
|
|
import torch
|
|
|
|
|
from diffusers import ImagePipelineOutput, PixArtAlphaPipeline, AutoencoderKL, Transformer2DModel, \
|
|
|
|
|
DPMSolverMultistepScheduler
|
|
|
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
|
|
|
from diffusers.models.attention import BasicTransformerBlock
|
|
|
|
|
from diffusers.models.embeddings import PixArtAlphaTextProjection, PatchEmbed
|
|
|
|
|
from diffusers.models.normalization import AdaLayerNormSingle
|
|
|
|
|
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps
|
|
|
|
|
from typing import Callable, List, Optional, Tuple, Union
|
|
|
|
|
|
|
|
|
|
from diffusers.utils import deprecate
|
|
|
|
|
from torch import nn
|
|
|
|
|
from transformers import T5Tokenizer, T5EncoderModel
|
|
|
|
|
|
|
|
|
|
ASPECT_RATIO_2048_BIN = {
|
|
|
|
|
"0.25": [1024.0, 4096.0],
|
|
|
|
|
"0.26": [1024.0, 3968.0],
|
|
|
|
|
"0.27": [1024.0, 3840.0],
|
|
|
|
|
"0.28": [1024.0, 3712.0],
|
|
|
|
|
"0.32": [1152.0, 3584.0],
|
|
|
|
|
"0.33": [1152.0, 3456.0],
|
|
|
|
|
"0.35": [1152.0, 3328.0],
|
|
|
|
|
"0.4": [1280.0, 3200.0],
|
|
|
|
|
"0.42": [1280.0, 3072.0],
|
|
|
|
|
"0.48": [1408.0, 2944.0],
|
|
|
|
|
"0.5": [1408.0, 2816.0],
|
|
|
|
|
"0.52": [1408.0, 2688.0],
|
|
|
|
|
"0.57": [1536.0, 2688.0],
|
|
|
|
|
"0.6": [1536.0, 2560.0],
|
|
|
|
|
"0.68": [1664.0, 2432.0],
|
|
|
|
|
"0.72": [1664.0, 2304.0],
|
|
|
|
|
"0.78": [1792.0, 2304.0],
|
|
|
|
|
"0.82": [1792.0, 2176.0],
|
|
|
|
|
"0.88": [1920.0, 2176.0],
|
|
|
|
|
"0.94": [1920.0, 2048.0],
|
|
|
|
|
"1.0": [2048.0, 2048.0],
|
|
|
|
|
"1.07": [2048.0, 1920.0],
|
|
|
|
|
"1.13": [2176.0, 1920.0],
|
|
|
|
|
"1.21": [2176.0, 1792.0],
|
|
|
|
|
"1.29": [2304.0, 1792.0],
|
|
|
|
|
"1.38": [2304.0, 1664.0],
|
|
|
|
|
"1.46": [2432.0, 1664.0],
|
|
|
|
|
"1.67": [2560.0, 1536.0],
|
|
|
|
|
"1.75": [2688.0, 1536.0],
|
|
|
|
|
"2.0": [2816.0, 1408.0],
|
|
|
|
|
"2.09": [2944.0, 1408.0],
|
|
|
|
|
"2.4": [3072.0, 1280.0],
|
|
|
|
|
"2.5": [3200.0, 1280.0],
|
|
|
|
|
"2.89": [3328.0, 1152.0],
|
|
|
|
|
"3.0": [3456.0, 1152.0],
|
|
|
|
|
"3.11": [3584.0, 1152.0],
|
|
|
|
|
"3.62": [3712.0, 1024.0],
|
|
|
|
|
"3.75": [3840.0, 1024.0],
|
|
|
|
|
"3.88": [3968.0, 1024.0],
|
|
|
|
|
"4.0": [4096.0, 1024.0]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ASPECT_RATIO_256_BIN = {
|
|
|
|
|
"0.25": [128.0, 512.0],
|
|
|
|
|
"0.28": [128.0, 464.0],
|
|
|
|
|
"0.32": [144.0, 448.0],
|
|
|
|
|
"0.33": [144.0, 432.0],
|
|
|
|
|
"0.35": [144.0, 416.0],
|
|
|
|
|
"0.4": [160.0, 400.0],
|
|
|
|
|
"0.42": [160.0, 384.0],
|
|
|
|
|
"0.48": [176.0, 368.0],
|
|
|
|
|
"0.5": [176.0, 352.0],
|
|
|
|
|
"0.52": [176.0, 336.0],
|
|
|
|
|
"0.57": [192.0, 336.0],
|
|
|
|
|
"0.6": [192.0, 320.0],
|
|
|
|
|
"0.68": [208.0, 304.0],
|
|
|
|
|
"0.72": [208.0, 288.0],
|
|
|
|
|
"0.78": [224.0, 288.0],
|
|
|
|
|
"0.82": [224.0, 272.0],
|
|
|
|
|
"0.88": [240.0, 272.0],
|
|
|
|
|
"0.94": [240.0, 256.0],
|
|
|
|
|
"1.0": [256.0, 256.0],
|
|
|
|
|
"1.07": [256.0, 240.0],
|
|
|
|
|
"1.13": [272.0, 240.0],
|
|
|
|
|
"1.21": [272.0, 224.0],
|
|
|
|
|
"1.29": [288.0, 224.0],
|
|
|
|
|
"1.38": [288.0, 208.0],
|
|
|
|
|
"1.46": [304.0, 208.0],
|
|
|
|
|
"1.67": [320.0, 192.0],
|
|
|
|
|
"1.75": [336.0, 192.0],
|
|
|
|
|
"2.0": [352.0, 176.0],
|
|
|
|
|
"2.09": [368.0, 176.0],
|
|
|
|
|
"2.4": [384.0, 160.0],
|
|
|
|
|
"2.5": [400.0, 160.0],
|
|
|
|
|
"3.0": [432.0, 144.0],
|
|
|
|
|
"4.0": [512.0, 128.0]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ASPECT_RATIO_1024_BIN = {
|
|
|
|
|
"0.25": [512.0, 2048.0],
|
|
|
|
|
"0.28": [512.0, 1856.0],
|
|
|
|
|
"0.32": [576.0, 1792.0],
|
|
|
|
|
"0.33": [576.0, 1728.0],
|
|
|
|
|
"0.35": [576.0, 1664.0],
|
|
|
|
|
"0.4": [640.0, 1600.0],
|
|
|
|
|
"0.42": [640.0, 1536.0],
|
|
|
|
|
"0.48": [704.0, 1472.0],
|
|
|
|
|
"0.5": [704.0, 1408.0],
|
|
|
|
|
"0.52": [704.0, 1344.0],
|
|
|
|
|
"0.57": [768.0, 1344.0],
|
|
|
|
|
"0.6": [768.0, 1280.0],
|
|
|
|
|
"0.68": [832.0, 1216.0],
|
|
|
|
|
"0.72": [832.0, 1152.0],
|
|
|
|
|
"0.78": [896.0, 1152.0],
|
|
|
|
|
"0.82": [896.0, 1088.0],
|
|
|
|
|
"0.88": [960.0, 1088.0],
|
|
|
|
|
"0.94": [960.0, 1024.0],
|
|
|
|
|
"1.0": [1024.0, 1024.0],
|
|
|
|
|
"1.07": [1024.0, 960.0],
|
|
|
|
|
"1.13": [1088.0, 960.0],
|
|
|
|
|
"1.21": [1088.0, 896.0],
|
|
|
|
|
"1.29": [1152.0, 896.0],
|
|
|
|
|
"1.38": [1152.0, 832.0],
|
|
|
|
|
"1.46": [1216.0, 832.0],
|
|
|
|
|
"1.67": [1280.0, 768.0],
|
|
|
|
|
"1.75": [1344.0, 768.0],
|
|
|
|
|
"2.0": [1408.0, 704.0],
|
|
|
|
|
"2.09": [1472.0, 704.0],
|
|
|
|
|
"2.4": [1536.0, 640.0],
|
|
|
|
|
"2.5": [1600.0, 640.0],
|
|
|
|
|
"3.0": [1728.0, 576.0],
|
|
|
|
|
"4.0": [2048.0, 512.0],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
ASPECT_RATIO_512_BIN = {
|
|
|
|
|
"0.25": [256.0, 1024.0],
|
|
|
|
|
"0.28": [256.0, 928.0],
|
|
|
|
|
"0.32": [288.0, 896.0],
|
|
|
|
|
"0.33": [288.0, 864.0],
|
|
|
|
|
"0.35": [288.0, 832.0],
|
|
|
|
|
"0.4": [320.0, 800.0],
|
|
|
|
|
"0.42": [320.0, 768.0],
|
|
|
|
|
"0.48": [352.0, 736.0],
|
|
|
|
|
"0.5": [352.0, 704.0],
|
|
|
|
|
"0.52": [352.0, 672.0],
|
|
|
|
|
"0.57": [384.0, 672.0],
|
|
|
|
|
"0.6": [384.0, 640.0],
|
|
|
|
|
"0.68": [416.0, 608.0],
|
|
|
|
|
"0.72": [416.0, 576.0],
|
|
|
|
|
"0.78": [448.0, 576.0],
|
|
|
|
|
"0.82": [448.0, 544.0],
|
|
|
|
|
"0.88": [480.0, 544.0],
|
|
|
|
|
"0.94": [480.0, 512.0],
|
|
|
|
|
"1.0": [512.0, 512.0],
|
|
|
|
|
"1.07": [512.0, 480.0],
|
|
|
|
|
"1.13": [544.0, 480.0],
|
|
|
|
|
"1.21": [544.0, 448.0],
|
|
|
|
|
"1.29": [576.0, 448.0],
|
|
|
|
|
"1.38": [576.0, 416.0],
|
|
|
|
|
"1.46": [608.0, 416.0],
|
|
|
|
|
"1.67": [640.0, 384.0],
|
|
|
|
|
"1.75": [672.0, 384.0],
|
|
|
|
|
"2.0": [704.0, 352.0],
|
|
|
|
|
"2.09": [736.0, 352.0],
|
|
|
|
|
"2.4": [768.0, 320.0],
|
|
|
|
|
"2.5": [800.0, 320.0],
|
|
|
|
|
"3.0": [864.0, 288.0],
|
|
|
|
|
"4.0": [1024.0, 256.0],
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pipeline_pixart_alpha_call(
|
|
|
|
|
self,
|
|
|
|
|
prompt: Union[str, List[str]] = None,
|
|
|
|
|
negative_prompt: str = "",
|
|
|
|
|
num_inference_steps: int = 20,
|
|
|
|
|
timesteps: List[int] = None,
|
|
|
|
|
guidance_scale: float = 4.5,
|
|
|
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
|
|
|
height: Optional[int] = None,
|
|
|
|
|
width: Optional[int] = None,
|
|
|
|
|
eta: float = 0.0,
|
|
|
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
|
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
|
|
|
prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
|
|
|
|
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
|
|
|
|
output_type: Optional[str] = "pil",
|
|
|
|
|
return_dict: bool = True,
|
|
|
|
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
|
|
|
|
callback_steps: int = 1,
|
|
|
|
|
clean_caption: bool = True,
|
|
|
|
|
use_resolution_binning: bool = True,
|
|
|
|
|
max_sequence_length: int = 120,
|
|
|
|
|
**kwargs,
|
|
|
|
|
) -> Union[ImagePipelineOutput, Tuple]:
|
|
|
|
|
"""
|
|
|
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
|
|
|
instead.
|
|
|
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
|
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
|
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
|
|
|
less than `1`).
|
|
|
|
|
num_inference_steps (`int`, *optional*, defaults to 100):
|
|
|
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
|
|
|
expense of slower inference.
|
|
|
|
|
timesteps (`List[int]`, *optional*):
|
|
|
|
|
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
|
|
|
|
timesteps are used. Must be in descending order.
|
|
|
|
|
guidance_scale (`float`, *optional*, defaults to 4.5):
|
|
|
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
|
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
|
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
|
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
|
|
|
usually at the expense of lower image quality.
|
|
|
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
|
|
|
The number of images to generate per prompt.
|
|
|
|
|
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|
|
|
|
The height in pixels of the generated image.
|
|
|
|
|
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
|
|
|
|
The width in pixels of the generated image.
|
|
|
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
|
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
|
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
|
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
|
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
|
|
|
to make generation deterministic.
|
|
|
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
|
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
|
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
|
|
|
prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
|
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
|
|
|
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
|
|
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
|
|
|
|
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
|
|
|
|
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
|
|
|
|
Pre-generated attention mask for negative text embeddings.
|
|
|
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
|
|
|
The output format of the generate image. Choose between
|
|
|
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
|
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
|
|
|
|
callback (`Callable`, *optional*):
|
|
|
|
|
A function that will be called every `callback_steps` steps during inference. The function will be
|
|
|
|
|
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
|
|
|
|
callback_steps (`int`, *optional*, defaults to 1):
|
|
|
|
|
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
|
|
|
|
called at every step.
|
|
|
|
|
clean_caption (`bool`, *optional*, defaults to `True`):
|
|
|
|
|
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
|
|
|
|
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
|
|
|
|
prompt.
|
|
|
|
|
use_resolution_binning (`bool` defaults to `True`):
|
|
|
|
|
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
|
|
|
|
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
|
|
|
|
the requested resolution. Useful for generating non-square images.
|
|
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
|
|
|
|
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
|
|
|
|
returned where the first element is a list with the generated images
|
|
|
|
|
"""
|
|
|
|
|
if "mask_feature" in kwargs:
|
|
|
|
|
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
|
|
|
|
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
|
|
|
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
|
|
|
|
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
|
|
|
|
if use_resolution_binning:
|
|
|
|
|
if self.transformer.config.sample_size == 32:
|
|
|
|
|
aspect_ratio_bin = ASPECT_RATIO_256_BIN
|
|
|
|
|
elif self.transformer.config.sample_size == 64:
|
|
|
|
|
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
|
|
|
|
elif self.transformer.config.sample_size == 128:
|
|
|
|
|
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
|
|
|
|
elif self.transformer.config.sample_size == 256:
|
|
|
|
|
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
|
|
|
|
else:
|
|
|
|
|
raise ValueError("Invalid sample size")
|
|
|
|
|
orig_height, orig_width = height, width
|
|
|
|
|
height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
|
|
|
|
|
|
|
|
|
self.check_inputs(
|
|
|
|
|
prompt,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
negative_prompt,
|
|
|
|
|
callback_steps,
|
|
|
|
|
prompt_embeds,
|
|
|
|
|
negative_prompt_embeds,
|
|
|
|
|
prompt_attention_mask,
|
|
|
|
|
negative_prompt_attention_mask,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 2. Default height and width to transformer
|
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
|
|
|
batch_size = 1
|
|
|
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
|
|
|
batch_size = len(prompt)
|
|
|
|
|
else:
|
|
|
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
|
|
|
|
|
|
device = self._execution_device
|
|
|
|
|
|
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
|
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
|
|
|
# corresponds to doing no classifier free guidance.
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
|
|
|
|
|
|
|
|
# 3. Encode input prompt
|
|
|
|
|
(
|
|
|
|
|
prompt_embeds,
|
|
|
|
|
prompt_attention_mask,
|
|
|
|
|
negative_prompt_embeds,
|
|
|
|
|
negative_prompt_attention_mask,
|
|
|
|
|
) = self.encode_prompt(
|
|
|
|
|
prompt,
|
|
|
|
|
do_classifier_free_guidance,
|
|
|
|
|
negative_prompt=negative_prompt,
|
|
|
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
|
|
|
device=device,
|
|
|
|
|
prompt_embeds=prompt_embeds,
|
|
|
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
|
|
|
prompt_attention_mask=prompt_attention_mask,
|
|
|
|
|
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
|
|
|
|
clean_caption=clean_caption,
|
|
|
|
|
max_sequence_length=max_sequence_length,
|
|
|
|
|
)
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
|
|
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
|
|
|
|
|
|
|
|
|
# 4. Prepare timesteps
|
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
|
|
|
|
|
|
|
|
|
# 5. Prepare latents.
|
|
|
|
|
latent_channels = self.transformer.config.in_channels
|
|
|
|
|
latents = self.prepare_latents(
|
|
|
|
|
batch_size * num_images_per_prompt,
|
|
|
|
|
latent_channels,
|
|
|
|
|
height,
|
|
|
|
|
width,
|
|
|
|
|
prompt_embeds.dtype,
|
|
|
|
|
device,
|
|
|
|
|
generator,
|
|
|
|
|
latents,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
|
|
|
|
|
|
|
|
|
# 6.1 Prepare micro-conditions.
|
|
|
|
|
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
|
|
|
|
if self.transformer.config.sample_size == 128:
|
|
|
|
|
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
|
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
|
|
|
|
|
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
|
|
|
|
|
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)
|
|
|
|
|
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
resolution = torch.cat([resolution, resolution], dim=0)
|
|
|
|
|
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)
|
|
|
|
|
|
|
|
|
|
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}
|
|
|
|
|
|
|
|
|
|
# 7. Denoising loop
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
|
|
|
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
|
|
|
for i, t in enumerate(timesteps):
|
|
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
|
|
|
|
|
|
current_timestep = t
|
|
|
|
|
if not torch.is_tensor(current_timestep):
|
|
|
|
|
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
|
|
|
|
# This would be a good case for the `match` statement (Python 3.10+)
|
|
|
|
|
is_mps = latent_model_input.device.type == "mps"
|
|
|
|
|
if isinstance(current_timestep, float):
|
|
|
|
|
dtype = torch.float32 if is_mps else torch.float64
|
|
|
|
|
else:
|
|
|
|
|
dtype = torch.int32 if is_mps else torch.int64
|
|
|
|
|
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
|
|
|
|
elif len(current_timestep.shape) == 0:
|
|
|
|
|
current_timestep = current_timestep[None].to(latent_model_input.device)
|
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
|
|
|
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
|
|
|
|
|
|
|
|
|
# predict noise model_output
|
|
|
|
|
noise_pred = self.transformer(
|
|
|
|
|
latent_model_input,
|
|
|
|
|
encoder_hidden_states=prompt_embeds,
|
|
|
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
|
|
|
timestep=current_timestep,
|
|
|
|
|
added_cond_kwargs=added_cond_kwargs,
|
|
|
|
|
return_dict=False,
|
|
|
|
|
)[0]
|
|
|
|
|
|
|
|
|
|
# perform guidance
|
|
|
|
|
if do_classifier_free_guidance:
|
|
|
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
|
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
|
|
|
# learned sigma
|
|
|
|
|
if self.transformer.config.out_channels // 2 == latent_channels:
|
|
|
|
|
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
|
|
|
|
else:
|
|
|
|
|
noise_pred = noise_pred
|
|
|
|
|
|
|
|
|
|
# compute previous image: x_t -> x_t-1
|
|
|
|
|
if num_inference_steps == 1:
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
|
|
|
|
|
else:
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
# call the callback, if provided
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
|
|
|
progress_bar.update()
|
|
|
|
|
if callback is not None and i % callback_steps == 0:
|
|
|
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
|
|
|
callback(step_idx, t, latents)
|
|
|
|
|
|
|
|
|
|
if not output_type == "latent":
|
|
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
|
|
|
|
if use_resolution_binning:
|
|
|
|
|
image = self.resize_and_crop_tensor(image, orig_width, orig_height)
|
|
|
|
|
else:
|
|
|
|
|
image = latents
|
|
|
|
|
|
|
|
|
|
if not output_type == "latent":
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type)
|
|
|
|
|
|
|
|
|
|
# Offload all models
|
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
|
|
|
|
|
|
if not return_dict:
|
|
|
|
|
return (image,)
|
|
|
|
|
|
|
|
|
|
return ImagePipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class PixArtSigmaPipeline(PixArtAlphaPipeline):
|
|
|
|
|
r"""
|
|
|
|
|
tmp Pipeline for text-to-image generation using PixArt-Sigma.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
|
self,
|
|
|
|
|
tokenizer: T5Tokenizer,
|
|
|
|
|
text_encoder: T5EncoderModel,
|
|
|
|
|
vae: AutoencoderKL,
|
|
|
|
|
transformer: Transformer2DModel,
|
|
|
|
|
scheduler: DPMSolverMultistepScheduler,
|
|
|
|
|
):
|
|
|
|
|
super().__init__(tokenizer, text_encoder, vae, transformer, scheduler)
|
|
|
|
|
|
|
|
|
|
self.register_modules(
|
|
|
|
|
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
|
|
|
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def pixart_sigma_init_patched_inputs(self, norm_type):
|
|
|
|
|
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
|
|
|
|
|
|
|
|
|
self.height = self.config.sample_size
|
|
|
|
|
self.width = self.config.sample_size
|
|
|
|
|
|
|
|
|
|
self.patch_size = self.config.patch_size
|
|
|
|
|
interpolation_scale = (
|
|
|
|
|
self.config.interpolation_scale
|
|
|
|
|
if self.config.interpolation_scale is not None
|
|
|
|
|
else max(self.config.sample_size // 64, 1)
|
|
|
|
|
)
|
|
|
|
|
self.pos_embed = PatchEmbed(
|
|
|
|
|
height=self.config.sample_size,
|
|
|
|
|
width=self.config.sample_size,
|
|
|
|
|
patch_size=self.config.patch_size,
|
|
|
|
|
in_channels=self.in_channels,
|
|
|
|
|
embed_dim=self.inner_dim,
|
|
|
|
|
interpolation_scale=interpolation_scale,
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.transformer_blocks = nn.ModuleList(
|
|
|
|
|
[
|
|
|
|
|
BasicTransformerBlock(
|
|
|
|
|
self.inner_dim,
|
|
|
|
|
self.config.num_attention_heads,
|
|
|
|
|
self.config.attention_head_dim,
|
|
|
|
|
dropout=self.config.dropout,
|
|
|
|
|
cross_attention_dim=self.config.cross_attention_dim,
|
|
|
|
|
activation_fn=self.config.activation_fn,
|
|
|
|
|
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
|
|
|
|
attention_bias=self.config.attention_bias,
|
|
|
|
|
only_cross_attention=self.config.only_cross_attention,
|
|
|
|
|
double_self_attention=self.config.double_self_attention,
|
|
|
|
|
upcast_attention=self.config.upcast_attention,
|
|
|
|
|
norm_type=norm_type,
|
|
|
|
|
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
|
|
|
|
norm_eps=self.config.norm_eps,
|
|
|
|
|
attention_type=self.config.attention_type,
|
|
|
|
|
)
|
|
|
|
|
for _ in range(self.config.num_layers)
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
if self.config.norm_type != "ada_norm_single":
|
|
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
|
|
|
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
|
|
|
|
self.proj_out_2 = nn.Linear(
|
|
|
|
|
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
|
|
|
|
)
|
|
|
|
|
elif self.config.norm_type == "ada_norm_single":
|
|
|
|
|
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
|
|
|
|
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5)
|
|
|
|
|
self.proj_out = nn.Linear(
|
|
|
|
|
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# PixArt-Sigma blocks.
|
|
|
|
|
self.adaln_single = None
|
|
|
|
|
self.use_additional_conditions = False
|
|
|
|
|
if self.config.norm_type == "ada_norm_single":
|
|
|
|
|
# TODO(Sayak, PVP) clean this, PixArt-Sigma doesn't use additional_conditions anymore
|
|
|
|
|
# additional conditions until we find better name
|
|
|
|
|
self.adaln_single = AdaLayerNormSingle(
|
|
|
|
|
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
self.caption_projection = None
|
|
|
|
|
if self.caption_channels is not None:
|
|
|
|
|
self.caption_projection = PixArtAlphaTextProjection(
|
|
|
|
|
in_features=self.caption_channels, hidden_size=self.inner_dim
|
|
|
|
|
)
|