Information trainer

This commit is contained in:
Jaret Burkett
2023-07-28 08:16:29 -06:00
parent c7640b0865
commit 5fc2bb5d9c
3 changed files with 382 additions and 94 deletions

View File

@@ -13,7 +13,8 @@ from toolkit.pipelines import CustomStableDiffusionXLPipeline, CustomStableDiffu
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, KDPM2DiscreteScheduler
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, KDPM2DiscreteScheduler, PNDMScheduler, \
DDIMScheduler, DDPMScheduler
from jobs.process import BaseTrainProcess
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors
@@ -38,8 +39,9 @@ VAE_SCALE_FACTOR = 8 # 2 ** (len(vae.config.block_out_channels) - 1) = 8
class BaseSDTrainProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
def __init__(self, process_id: int, job, config: OrderedDict, custom_pipeline=None):
super().__init__(process_id, job, config)
self.custom_pipeline = custom_pipeline
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
@@ -271,6 +273,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
)
self.print(f"Saved to {file_path}")
self.clean_up_saves()
# Called before the model is loaded
def hook_before_model_load(self):
@@ -467,18 +470,24 @@ class BaseSDTrainProcess(BaseTrainProcess):
dtype = get_torch_dtype(self.train_config.dtype)
# TODO handle other schedulers
sch = KDPM2DiscreteScheduler
# do our own scheduler
scheduler = KDPM2DiscreteScheduler(
scheduler = sch(
num_train_timesteps=1000,
beta_start=0.00085,
beta_end=0.0120,
beta_schedule="scaled_linear",
)
if self.model_config.is_xl:
pipe = CustomStableDiffusionXLPipeline.from_single_file(
if self.custom_pipeline is not None:
pipln = self.custom_pipeline
else:
pipln = CustomStableDiffusionXLPipeline
pipe = pipln.from_single_file(
self.model_config.name_or_path,
dtype=dtype,
scheduler_type='dpm',
scheduler_type='ddpm',
device=self.device_torch,
).to(self.device_torch)
@@ -490,7 +499,11 @@ class BaseSDTrainProcess(BaseTrainProcess):
text_encoder.eval()
text_encoder = text_encoders
else:
pipe = CustomStableDiffusionPipeline.from_single_file(
if self.custom_pipeline is not None:
pipln = self.custom_pipeline
else:
pipln = CustomStableDiffusionPipeline
pipe = pipln.from_single_file(
self.model_config.name_or_path,
dtype=dtype,
scheduler_type='dpm',
@@ -614,7 +627,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
if self.has_first_sample_requested:
self.print("Generating first sample from first sample config")
self.sample(0, is_first=False)
self.sample(0, is_first=True)
# sample first
if self.train_config.skip_first_sample: