WIP diffusers pipeline is weird. Starting to hate sdxl

This commit is contained in:
Jaret Burkett
2023-07-27 17:35:24 -06:00
parent b2e2e4bf47
commit c7640b0865
6 changed files with 670 additions and 233 deletions

View File

@@ -16,7 +16,8 @@ sys.path.append(REPOS_ROOT)
process_dict = {
'vae': 'TrainVAEProcess',
'slider': 'TrainSliderProcess',
'slider_dev': 'TrainSliderProcess',
'slider': 'TrainSliderProcessOld',
'lora_hack': 'TrainLoRAHack',
'rescale_sd': 'TrainSDRescaleProcess',
}

View File

@@ -5,6 +5,9 @@ from collections import OrderedDict
import os
from typing import Optional
from safetensors.torch import save_file, load_file
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.paths import REPOS_ROOT
import sys
@@ -35,28 +38,35 @@ def flush():
class EncodedPromptPair:
def __init__(
self,
target_class,
positive,
negative,
positive_target,
positive_target_with_neutral,
negative_target,
negative_target_with_neutral,
neutral,
width=512,
height=512,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=1.0,
weight=1.0
both_targets,
empty_prompt
):
self.target_class = target_class
self.positive = positive
self.negative = negative
self.positive_target = positive_target
self.positive_target_with_neutral = positive_target_with_neutral
self.negative_target = negative_target
self.negative_target_with_neutral = negative_target_with_neutral
self.neutral = neutral
self.width = width
self.height = height
self.action: int = action
self.multiplier = multiplier
self.weight = weight
self.empty_prompt = empty_prompt
self.both_targets = both_targets
# simulate torch to for tensors
def to(self, *args, **kwargs):
self.positive_target = self.positive_target.to(*args, **kwargs)
self.positive_target_with_neutral = self.positive_target_with_neutral.to(*args, **kwargs)
self.negative_target = self.negative_target.to(*args, **kwargs)
self.negative_target_with_neutral = self.negative_target_with_neutral.to(*args, **kwargs)
self.neutral = self.neutral.to(*args, **kwargs)
self.empty_prompt = self.empty_prompt.to(*args, **kwargs)
self.both_targets = self.both_targets.to(*args, **kwargs)
return self
class PromptEmbedsCache: # 使いまわしたいので
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
@@ -84,6 +94,7 @@ class EncodedAnchor:
class TrainSliderProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.prompt_txt_list = None
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
@@ -97,115 +108,95 @@ class TrainSliderProcess(BaseSDTrainProcess):
pass
def hook_before_train_loop(self):
self.print(f"Loading prompt file from {self.slider_config.prompt_file}")
# read line by line from file
with open(self.slider_config.prompt_file, 'r') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
cache = PromptEmbedsCache()
prompt_pairs: list[EncodedPromptPair] = []
# get encoded latents for our prompts
with torch.no_grad():
neutral = ""
for target in self.slider_config.targets:
# build the cache
for prompt in [
target.target_class,
target.positive,
target.negative,
neutral # empty neutral
]:
if cache[prompt] is None:
cache[prompt] = self.sd.encode_prompt(prompt)
for resolution in self.slider_config.resolutions:
width, height = resolution
only_erase = len(target.positive.strip()) == 0
only_enhance = len(target.negative.strip()) == 0
if self.slider_config.prompt_tensors is not None:
# check to see if it exists
if os.path.exists(self.slider_config.prompt_tensors):
# load it.
self.print(f"Loading prompt tensors from {self.slider_config.prompt_tensors}")
prompt_tensors = load_file(self.slider_config.prompt_tensors, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in prompt_tensors.items():
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
both = not only_erase and not only_enhance
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if only_erase and only_enhance:
raise ValueError("target must have at least one of positive or negative or both")
# for slider we need to have an enhancer, an eraser, and then
# an inverse with negative weights to balance the network
# if we don't do this, we will get different contrast and focus.
# we only perform actions of enhancing and erasing on the negative
# todo work on way to do all of this in one shot
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
empty_prompt = ""
# encode empty_prompt
cache[empty_prompt] = self.sd.encode_prompt(empty_prompt)
if both or only_erase:
prompt_pairs += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.positive],
negative=cache[target.negative],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
weight=target.weight
),
]
if both or only_enhance:
prompt_pairs += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.negative],
negative=cache[target.positive],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
weight=target.weight
),
]
if both:
prompt_pairs += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.negative],
negative=cache[target.positive],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
prompt_pairs += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.positive],
negative=cache[target.negative],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier * -1.0,
weight=target.weight
),
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
for target in self.slider_config.targets:
prompt_list = [
f"{target.positive}", # positive_target
f"{target.positive} {neutral}", # positive_target with neutral
f"{target.negative}", # negative_target
f"{target.negative} {neutral}", # negative_target with neutral
f"{neutral}", # neutral
f"{target.positive} {target.negative}", # both targets
f"{target.negative} {target.positive}", # both targets
]
for p in prompt_list:
# build the cache
if cache[p] is None:
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
# setup anchors
anchor_pairs = []
for anchor in self.slider_config.anchors:
# build the cache
for prompt in [
anchor.prompt,
anchor.neg_prompt # empty neutral
]:
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
if self.slider_config.prompt_tensors:
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
dtype=get_torch_dtype('fp16'))
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
dtype=get_torch_dtype(
'fp16'))
save_file(state_dict, self.slider_config.prompt_tensors)
anchor_pairs += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier
)
]
self.print("Encoding complete. Building prompt pairs..")
for neutral in self.prompt_txt_list:
for target in self.slider_config.targets:
both_prompts_list = [
f"{target.positive} {target.negative}",
f"{target.negative} {target.positive}",
]
# randomly pick one of the both prompts to prevent bias
both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
prompt_pair = EncodedPromptPair(
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
both_targets=cache[both_prompts],
empty_prompt=cache[""],
).to(device="cpu", dtype=torch.float32)
self.prompt_pairs.append(prompt_pair)
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
@@ -216,8 +207,7 @@ class TrainSliderProcess(BaseSDTrainProcess):
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
self.anchor_pairs = anchor_pairs
flush()
# end hook_before_train_loop
@@ -228,15 +218,13 @@ class TrainSliderProcess(BaseSDTrainProcess):
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
# move to device and dtype
prompt_pair.to(self.device_torch, dtype=dtype)
height = prompt_pair.height
width = prompt_pair.width
target_class = prompt_pair.target_class
neutral = prompt_pair.neutral
negative = prompt_pair.negative
positive = prompt_pair.positive
weight = prompt_pair.weight
multiplier = prompt_pair.multiplier
# get a random resolution
height, width = self.slider_config.resolutions[
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
]
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
@@ -244,21 +232,6 @@ class TrainSliderProcess(BaseSDTrainProcess):
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
p, # unconditional
n, # positive
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
# set network multiplier
self.network.multiplier = multiplier
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
@@ -281,99 +254,154 @@ class TrainSliderProcess(BaseSDTrainProcess):
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
with self.network:
assert self.network.is_active
self.network.multiplier = multiplier
denoised_latents = self.diffuse_some_steps(
latents, # pass simple noise latents
train_tools.concat_prompt_embeddings(
positive, # unconditional
target_class, # target
self.train_config.batch_size,
),
start_timesteps=0,
total_timesteps=timesteps_to,
guidance_scale=3,
)
denoised_fraction = timesteps_to / (self.train_config.max_denoising_steps + 1)
self.sd.pipeline.to(self.device_torch)
torch.set_default_device(self.device_torch)
self.sd.pipeline.set_progress_bar_config(disable=True)
# get generate semi denoised latents without network
# only neutrap in positive and both targets in negative
assert not self.network.is_active
# denoised_latents = self.sd.pipeline(
# num_inference_steps=self.train_config.max_denoising_steps,
# denoising_end=denoised_fraction,
# latents=latents,
# prompt_embeds=prompt_pair.neutral.text_embeds,
# negative_prompt_embeds=prompt_pair.both_targets.text_embeds,
# pooled_prompt_embeds=prompt_pair.neutral.pooled_embeds,
# negative_pooled_prompt_embeds=prompt_pair.both_targets.pooled_embeds,
# output_type="latent",
# num_images_per_prompt=self.train_config.batch_size,
# guidance_scale=3,
# ).images.to(self.device_torch, dtype=dtype)
noise_scheduler.set_timesteps(1000)
current_timestep = noise_scheduler.timesteps[
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
denoised_latents = noise
positive_latents = get_noise_pred(
positive, negative, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
neutral_latents = get_noise_pred(
positive, neutral, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
unconditional_latents = get_noise_pred(
positive, positive, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
anchor_loss = None
if len(self.anchor_pairs) > 0:
# get a random anchor pair
anchor: EncodedAnchor = self.anchor_pairs[
torch.randint(0, len(self.anchor_pairs), (1,)).item()
]
with torch.no_grad():
anchor_target_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
with self.network:
# anchor whatever weight prompt pair is using
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
self.network.multiplier = anchor.multiplier * pos_nem_mult
anchor_pred_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
self.network.multiplier = prompt_pair.multiplier
with self.network:
self.network.multiplier = prompt_pair.multiplier
target_latents = get_noise_pred(
positive, target_class, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
# if self.logging_config.verbose:
# self.print("target_latents:", target_latents[0, 0, :5, :5])
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
unconditional_latents.requires_grad = False
if len(self.anchor_pairs) > 0:
anchor_target_noise.requires_grad = False
anchor_loss = loss_function(
anchor_target_noise,
anchor_pred_noise,
# neutral prediction
neutral_noise_prediction = self.sd.pipeline.predict_noise(
latents=denoised_latents,
prompt_embeds=prompt_pair.neutral.text_embeds,
negative_prompt_embeds=prompt_pair.empty_prompt.text_embeds,
pooled_prompt_embeds=prompt_pair.neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.both_targets.pooled_embeds,
timestep=current_timestep,
guidance_scale=1,
num_images_per_prompt=self.train_config.batch_size,
num_inference_steps=1000,
)
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
guidance_scale = 1.0
offset = guidance_scale * (positive_latents - unconditional_latents)
# with self.network:
# assert self.network.is_active
# self.network.multiplier = 1.0
#
# positive_pos_noise_prediction = self.sd.pipeline.predict_noise(
# latents=denoised_latents,
# prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
# negative_prompt_embeds=prompt_pair.negative_target.text_embeds,
# pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
# negative_pooled_prompt_embeds=prompt_pair.negative_target.pooled_embeds,
# timestep=current_timestep,
# guidance_scale=1,
# num_images_per_prompt=self.train_config.batch_size,
# num_inference_steps=1000
# )
#
# self.network.multiplier = -1.0
#
# negative_neg_noise_prediction = self.sd.pipeline.predict_noise(
# latents=denoised_latents,
# prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
# negative_prompt_embeds=prompt_pair.positive_target.text_embeds,
# pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
# negative_pooled_prompt_embeds=prompt_pair.positive_target.pooled_embeds,
# timestep=current_timestep,
# guidance_scale=1,
# num_images_per_prompt=self.train_config.batch_size,
# num_inference_steps=1000
# )
offset_neutral = neutral_latents
if erase:
offset_neutral -= offset
else:
# enhance
offset_neutral += offset
# start grads
self.optimizer.zero_grad()
loss = loss_function(
target_latents,
offset_neutral,
) * weight
multiplier = 5.0
loss_slide = loss.item()
# predict postiitive
with self.network:
assert self.network.is_active
self.network.multiplier = multiplier * 1.0
if anchor_loss is not None:
loss += anchor_loss
# positive_pos_noise_prediction = self.sd.pipeline.predict_noise(
# latents=denoised_latents,
# prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
# negative_prompt_embeds=prompt_pair.negative_target.text_embeds,
# pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
# negative_pooled_prompt_embeds=prompt_pair.negative_target.pooled_embeds,
# timestep=current_timestep,
# guidance_scale=1,
# num_images_per_prompt=self.train_config.batch_size,
# num_inference_steps=self.train_config.max_denoising_steps,
# )
negative_pos_noise_prediction = self.sd.pipeline.predict_noise(
latents=denoised_latents,
prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
negative_prompt_embeds=prompt_pair.positive_target.text_embeds,
pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.positive_target.pooled_embeds,
timestep=current_timestep,
guidance_scale=1,
num_images_per_prompt=self.train_config.batch_size,
num_inference_steps=1000,
)
self.network.multiplier = multiplier * -1.0
positive_neg_noise_prediction = self.sd.pipeline.predict_noise(
latents=denoised_latents,
prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
negative_prompt_embeds=prompt_pair.negative_target.text_embeds,
pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.negative_target.pooled_embeds,
timestep=current_timestep,
guidance_scale=1,
num_images_per_prompt=self.train_config.batch_size,
num_inference_steps=1000,
)
# negative_neg_noise_prediction = self.sd.pipeline.predict_noise(
# latents=denoised_latents,
# prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
# negative_prompt_embeds=prompt_pair.positive_target.text_embeds,
# pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
# negative_pooled_prompt_embeds=prompt_pair.positive_target.pooled_embeds,
# timestep=current_timestep,
# guidance_scale=1,
# num_images_per_prompt=self.train_config.batch_size,
# num_inference_steps=self.train_config.max_denoising_steps,
# )
self.network.multiplier = 1.0
neutral_noise_prediction.requires_grad = False
# positive_pos_noise_prediction.requires_grad = False
# negative_neg_noise_prediction.requires_grad = False
# calculate loss
loss_shrink_pos_neg = loss_function(
negative_pos_noise_prediction,
neutral_noise_prediction,
)
loss_shrink_neg_pos = loss_function(
positive_neg_noise_prediction,
negative_pos_noise_prediction,
)
loss = loss_shrink_pos_neg + loss_shrink_neg_pos
loss_float = loss.item()
@@ -384,12 +412,14 @@ class TrainSliderProcess(BaseSDTrainProcess):
lr_scheduler.step()
del (
positive_latents,
neutral_latents,
unconditional_latents,
target_latents,
denoised_latents,
positive_neg_noise_prediction,
negative_pos_noise_prediction,
neutral_noise_prediction,
latents,
)
# move back to cpu
prompt_pair.to("cpu")
flush()
# reset network
@@ -398,9 +428,6 @@ class TrainSliderProcess(BaseSDTrainProcess):
loss_dict = OrderedDict(
{'loss': loss_float},
)
if anchor_loss is not None:
loss_dict['sl_l'] = loss_slide
loss_dict['an_l'] = anchor_loss.item()
return loss_dict
# end hook_train_loop

View File

@@ -0,0 +1,406 @@
# ref:
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
import time
from collections import OrderedDict
import os
from typing import Optional
from toolkit.config_modules import SliderConfig
from toolkit.paths import REPOS_ROOT
import sys
from toolkit.stable_diffusion_model import PromptEmbeds
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools
import torch
from leco import train_util, model_util
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
class ACTION_TYPES_SLIDER:
ERASE_NEGATIVE = 0
ENHANCE_NEGATIVE = 1
def flush():
torch.cuda.empty_cache()
gc.collect()
class EncodedPromptPair:
def __init__(
self,
target_class,
positive,
negative,
neutral,
width=512,
height=512,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=1.0,
weight=1.0
):
self.target_class = target_class
self.positive = positive
self.negative = negative
self.neutral = neutral
self.width = width
self.height = height
self.action: int = action
self.multiplier = multiplier
self.weight = weight
class PromptEmbedsCache: # 使いまわしたいので
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class EncodedAnchor:
def __init__(
self,
prompt,
neg_prompt,
multiplier=1.0
):
self.prompt = prompt
self.neg_prompt = neg_prompt
self.multiplier = multiplier
class TrainSliderProcessOld(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.slider_config = SliderConfig(**self.get_conf('slider', {}))
self.prompt_cache = PromptEmbedsCache()
self.prompt_pairs: list[EncodedPromptPair] = []
self.anchor_pairs: list[EncodedAnchor] = []
def before_model_load(self):
pass
def hook_before_train_loop(self):
cache = PromptEmbedsCache()
prompt_pairs: list[EncodedPromptPair] = []
# get encoded latents for our prompts
with torch.no_grad():
neutral = ""
for target in self.slider_config.targets:
# build the cache
for prompt in [
target.target_class,
target.positive,
target.negative,
neutral # empty neutral
]:
if cache[prompt] is None:
cache[prompt] = self.sd.encode_prompt(prompt)
for resolution in self.slider_config.resolutions:
width, height = resolution
only_erase = len(target.positive.strip()) == 0
only_enhance = len(target.negative.strip()) == 0
both = not only_erase and not only_enhance
if only_erase and only_enhance:
raise ValueError("target must have at least one of positive or negative or both")
# for slider we need to have an enhancer, an eraser, and then
# an inverse with negative weights to balance the network
# if we don't do this, we will get different contrast and focus.
# we only perform actions of enhancing and erasing on the negative
# todo work on way to do all of this in one shot
if both or only_erase:
prompt_pairs += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.positive],
negative=cache[target.negative],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
weight=target.weight
),
]
if both or only_enhance:
prompt_pairs += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.negative],
negative=cache[target.positive],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
weight=target.weight
),
]
if both:
prompt_pairs += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.negative],
negative=cache[target.positive],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
prompt_pairs += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive=cache[target.positive],
negative=cache[target.negative],
neutral=cache[neutral],
width=width,
height=height,
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
# setup anchors
anchor_pairs = []
for anchor in self.slider_config.anchors:
# build the cache
for prompt in [
anchor.prompt,
anchor.neg_prompt # empty neutral
]:
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
anchor_pairs += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier
)
]
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
self.anchor_pairs = anchor_pairs
flush()
# end hook_before_train_loop
def hook_train_loop(self):
dtype = get_torch_dtype(self.train_config.dtype)
# get a random pair
prompt_pair: EncodedPromptPair = self.prompt_pairs[
torch.randint(0, len(self.prompt_pairs), (1,)).item()
]
height = prompt_pair.height
width = prompt_pair.width
target_class = prompt_pair.target_class
neutral = prompt_pair.neutral
negative = prompt_pair.negative
positive = prompt_pair.positive
weight = prompt_pair.weight
multiplier = prompt_pair.multiplier
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
p, # unconditional
n, # positive
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
# set network multiplier
self.network.multiplier = multiplier
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
self.optimizer.zero_grad()
# ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps, (1,)
).item()
# get noise
noise = self.get_latent_noise(
pixel_height=height,
pixel_width=width,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
with self.network:
assert self.network.is_active
self.network.multiplier = multiplier
denoised_latents = self.diffuse_some_steps(
latents, # pass simple noise latents
train_tools.concat_prompt_embeddings(
positive, # unconditional
target_class, # target
self.train_config.batch_size,
),
start_timesteps=0,
total_timesteps=timesteps_to,
guidance_scale=3,
)
noise_scheduler.set_timesteps(1000)
current_timestep = noise_scheduler.timesteps[
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
positive_latents = get_noise_pred(
positive, negative, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
neutral_latents = get_noise_pred(
positive, neutral, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
unconditional_latents = get_noise_pred(
positive, positive, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
anchor_loss = None
if len(self.anchor_pairs) > 0:
# get a random anchor pair
anchor: EncodedAnchor = self.anchor_pairs[
torch.randint(0, len(self.anchor_pairs), (1,)).item()
]
with torch.no_grad():
anchor_target_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
with self.network:
# anchor whatever weight prompt pair is using
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
self.network.multiplier = anchor.multiplier * pos_nem_mult
anchor_pred_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
self.network.multiplier = prompt_pair.multiplier
with self.network:
self.network.multiplier = prompt_pair.multiplier
target_latents = get_noise_pred(
positive, target_class, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
# if self.logging_config.verbose:
# self.print("target_latents:", target_latents[0, 0, :5, :5])
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
unconditional_latents.requires_grad = False
if len(self.anchor_pairs) > 0:
anchor_target_noise.requires_grad = False
anchor_loss = loss_function(
anchor_target_noise,
anchor_pred_noise,
)
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
guidance_scale = 1.0
offset = guidance_scale * (positive_latents - unconditional_latents)
offset_neutral = neutral_latents
if erase:
offset_neutral -= offset
else:
# enhance
offset_neutral += offset
loss = loss_function(
target_latents,
offset_neutral,
) * weight
loss_slide = loss.item()
if anchor_loss is not None:
loss += anchor_loss
loss_float = loss.item()
loss = loss.to(self.device_torch)
loss.backward()
optimizer.step()
lr_scheduler.step()
del (
positive_latents,
neutral_latents,
unconditional_latents,
target_latents,
latents,
)
flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
if anchor_loss is not None:
loss_dict['sl_l'] = loss_slide
loss_dict['an_l'] = anchor_loss.item()
return loss_dict
# end hook_train_loop

View File

@@ -6,5 +6,6 @@ from .BaseTrainProcess import BaseTrainProcess
from .TrainVAEProcess import TrainVAEProcess
from .BaseMergeProcess import BaseMergeProcess
from .TrainSliderProcess import TrainSliderProcess
from .TrainSliderProcessOld import TrainSliderProcessOld
from .TrainLoRAHack import TrainLoRAHack
from .TrainSDRescaleProcess import TrainSDRescaleProcess

View File

@@ -99,3 +99,5 @@ class SliderConfig:
anchors = [SliderConfigAnchors(**anchor) for anchor in anchors]
self.anchors: List[SliderConfigAnchors] = anchors
self.resolutions: List[List[int]] = kwargs.get('resolutions', [[512, 512]])
self.prompt_file: str = kwargs.get('prompt_file', '')
self.prompt_tensors: str = kwargs.get('prompt_tensors', '')

View File

@@ -30,10 +30,10 @@ class PromptEmbeds:
self.text_embeds = args
self.pooled_embeds = None
def to(self, **kwargs):
self.text_embeds = self.text_embeds.to(**kwargs)
def to(self, *args, **kwargs):
self.text_embeds = self.text_embeds.to(*args, **kwargs)
if self.pooled_embeds is not None:
self.pooled_embeds = self.pooled_embeds.to(**kwargs)
self.pooled_embeds = self.pooled_embeds.to(*args, **kwargs)
return self