mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Added sd1.5 and 2.1 do the diffusers pipeline flow
This commit is contained in:
@@ -3,17 +3,12 @@ import time
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
|
||||
import diffusers
|
||||
from safetensors import safe_open
|
||||
|
||||
from library import sdxl_train_util, sdxl_model_util
|
||||
from toolkit.kohya_model_util import load_vae
|
||||
from toolkit.lora_special import LoRASpecialNetwork
|
||||
from toolkit.optimizer import get_optimizer
|
||||
from toolkit.paths import REPOS_ROOT
|
||||
import sys
|
||||
|
||||
from toolkit.pipelines import CustomStableDiffusionXLPipeline
|
||||
from toolkit.pipelines import CustomStableDiffusionXLPipeline, CustomStableDiffusionPipeline
|
||||
|
||||
sys.path.append(REPOS_ROOT)
|
||||
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
|
||||
@@ -55,8 +50,13 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
self.model_config = ModelConfig(**self.get_conf('model', {}))
|
||||
self.save_config = SaveConfig(**self.get_conf('save', {}))
|
||||
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
|
||||
self.first_sample_config = SampleConfig(
|
||||
**self.get_conf('first_sample', {})) if 'first_sample' in self.config else self.sample_config
|
||||
first_sample_config = self.get_conf('first_sample', None)
|
||||
if first_sample_config is not None:
|
||||
self.has_first_sample_requested = True
|
||||
self.first_sample_config = SampleConfig(**first_sample_config)
|
||||
else:
|
||||
self.has_first_sample_requested = False
|
||||
self.first_sample_config = self.sample_config
|
||||
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
|
||||
self.optimizer = None
|
||||
self.lr_scheduler = None
|
||||
@@ -101,19 +101,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
# self.sd.text_encoder.to(self.device_torch)
|
||||
# self.sd.tokenizer.to(self.device_torch)
|
||||
# TODO add clip skip
|
||||
if self.sd.is_xl:
|
||||
pipeline = self.sd.pipeline
|
||||
else:
|
||||
pipeline = StableDiffusionPipeline(
|
||||
vae=self.sd.vae,
|
||||
unet=self.sd.unet,
|
||||
text_encoder=self.sd.text_encoder,
|
||||
tokenizer=self.sd.tokenizer,
|
||||
scheduler=self.sd.noise_scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
pipeline = self.sd.pipeline
|
||||
# disable progress bar
|
||||
pipeline.set_progress_bar_config(disable=True)
|
||||
|
||||
@@ -172,24 +160,16 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
torch.manual_seed(current_seed)
|
||||
torch.cuda.manual_seed(current_seed)
|
||||
|
||||
if self.sd.is_xl:
|
||||
img = pipeline(
|
||||
prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_config.sample_steps,
|
||||
guidance_scale=sample_config.guidance_scale,
|
||||
negative_prompt=neg,
|
||||
).images[0]
|
||||
else:
|
||||
img = pipeline(
|
||||
prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_config.sample_steps,
|
||||
guidance_scale=sample_config.guidance_scale,
|
||||
negative_prompt=neg,
|
||||
).images[0]
|
||||
img = pipeline(
|
||||
prompt=prompt,
|
||||
prompt_2=prompt,
|
||||
negative_prompt=neg,
|
||||
negative_prompt_2=neg,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_config.sample_steps,
|
||||
guidance_scale=sample_config.guidance_scale,
|
||||
).images[0]
|
||||
|
||||
step_num = ''
|
||||
if step is not None:
|
||||
@@ -202,9 +182,6 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
output_path = os.path.join(sample_folder, filename)
|
||||
img.save(output_path)
|
||||
|
||||
# clear pipeline and cache to reduce vram usage
|
||||
if not self.sd.is_xl:
|
||||
del pipeline
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# restore training state
|
||||
@@ -230,9 +207,12 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
})
|
||||
if self.model_config.is_v2:
|
||||
dict['ss_v2'] = True
|
||||
dict['ss_base_model_version'] = 'sd_2.1'
|
||||
|
||||
if self.model_config.is_xl:
|
||||
elif self.model_config.is_xl:
|
||||
dict['ss_base_model_version'] = 'sdxl_1.0'
|
||||
else:
|
||||
dict['ss_base_model_version'] = 'sd_1.5'
|
||||
|
||||
dict['ss_output_name'] = self.job.name
|
||||
|
||||
@@ -313,7 +293,6 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
):
|
||||
if height is None and pixel_height is None:
|
||||
raise ValueError("height or pixel_height must be specified")
|
||||
raise ValueError("height or pixel_height must be specified")
|
||||
if width is None and pixel_width is None:
|
||||
raise ValueError("width or pixel_width must be specified")
|
||||
if height is None:
|
||||
@@ -371,7 +350,6 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
):
|
||||
pass
|
||||
|
||||
|
||||
def predict_noise(
|
||||
self,
|
||||
latents: torch.FloatTensor,
|
||||
@@ -386,17 +364,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
if add_time_ids is None:
|
||||
add_time_ids = self.get_time_ids_from_latents(latents)
|
||||
# todo LECOs code looks like it is omitting noise_pred
|
||||
# noise_pred = train_util.predict_noise_xl(
|
||||
# self.sd.unet,
|
||||
# self.sd.noise_scheduler,
|
||||
# timestep,
|
||||
# latents,
|
||||
# text_embeddings.text_embeds,
|
||||
# text_embeddings.pooled_embeds,
|
||||
# add_time_ids,
|
||||
# guidance_scale=guidance_scale,
|
||||
# guidance_rescale=guidance_rescale
|
||||
# )
|
||||
|
||||
latent_model_input = torch.cat([latents] * 2)
|
||||
|
||||
latent_model_input = self.sd.noise_scheduler.scale_model_input(latent_model_input, timestep)
|
||||
@@ -499,64 +467,66 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
|
||||
dtype = get_torch_dtype(self.train_config.dtype)
|
||||
|
||||
# do our own scheduler
|
||||
scheduler = KDPM2DiscreteScheduler(
|
||||
num_train_timesteps=1000,
|
||||
beta_start=0.00085,
|
||||
beta_end=0.0120,
|
||||
beta_schedule="scaled_linear",
|
||||
)
|
||||
if self.model_config.is_xl:
|
||||
# do our own scheduler
|
||||
scheduler = KDPM2DiscreteScheduler(
|
||||
num_train_timesteps=1000,
|
||||
beta_start=0.00085,
|
||||
beta_end=0.0120,
|
||||
beta_schedule="scaled_linear",
|
||||
)
|
||||
|
||||
pipe = CustomStableDiffusionXLPipeline.from_single_file(
|
||||
self.model_config.name_or_path,
|
||||
dtype=dtype,
|
||||
scheduler_type='dpm',
|
||||
device=self.device_torch,
|
||||
).to(self.device_torch)
|
||||
pipe.scheduler = scheduler
|
||||
|
||||
text_encoders = [pipe.text_encoder, pipe.text_encoder_2]
|
||||
tokenizer = [pipe.tokenizer, pipe.tokenizer_2]
|
||||
unet = pipe.unet
|
||||
noise_scheduler = pipe.scheduler
|
||||
vae = pipe.vae.to('cpu', dtype=dtype)
|
||||
vae.eval()
|
||||
vae.set_use_memory_efficient_attention_xformers(True)
|
||||
|
||||
for text_encoder in text_encoders:
|
||||
text_encoder.to(self.device_torch, dtype=dtype)
|
||||
text_encoder.requires_grad_(False)
|
||||
text_encoder.eval()
|
||||
|
||||
text_encoder = text_encoders
|
||||
tokenizer = tokenizer
|
||||
flush()
|
||||
|
||||
|
||||
else:
|
||||
tokenizer, text_encoder, unet, noise_scheduler = model_util.load_models(
|
||||
pipe = CustomStableDiffusionPipeline.from_single_file(
|
||||
self.model_config.name_or_path,
|
||||
scheduler_name=self.train_config.noise_scheduler,
|
||||
v2=self.model_config.is_v2,
|
||||
v_pred=self.model_config.is_v_pred,
|
||||
)
|
||||
|
||||
dtype=dtype,
|
||||
scheduler_type='dpm',
|
||||
device=self.device_torch,
|
||||
load_safety_checker=False,
|
||||
).to(self.device_torch)
|
||||
pipe.register_to_config(requires_safety_checker=False)
|
||||
text_encoder = pipe.text_encoder
|
||||
text_encoder.to(self.device_torch, dtype=dtype)
|
||||
text_encoder.requires_grad_(False)
|
||||
text_encoder.eval()
|
||||
vae = load_vae(self.model_config.name_or_path, dtype=dtype).to('cpu', dtype=dtype)
|
||||
vae.eval()
|
||||
pipe = None
|
||||
tokenizer = pipe.tokenizer
|
||||
|
||||
# scheduler doesn't get set sometimes, so we set it here
|
||||
pipe.scheduler = scheduler
|
||||
|
||||
unet = pipe.unet
|
||||
noise_scheduler = pipe.scheduler
|
||||
vae = pipe.vae.to('cpu', dtype=dtype)
|
||||
vae.eval()
|
||||
vae.requires_grad_(False)
|
||||
flush()
|
||||
|
||||
|
||||
# just for now or of we want to load a custom one
|
||||
# put on cpu for now, we only need it when sampling
|
||||
# vae = load_vae(self.model_config.name_or_path, dtype=dtype).to('cpu', dtype=dtype)
|
||||
# vae.eval()
|
||||
self.sd = StableDiffusion(vae, tokenizer, text_encoder, unet, noise_scheduler, is_xl=self.model_config.is_xl, pipeline=pipe)
|
||||
self.sd = StableDiffusion(
|
||||
vae,
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
unet,
|
||||
noise_scheduler,
|
||||
is_xl=self.model_config.is_xl,
|
||||
pipeline=pipe
|
||||
)
|
||||
|
||||
unet.to(self.device_torch, dtype=dtype)
|
||||
if self.train_config.xformers:
|
||||
vae.set_use_memory_efficient_attention_xformers(True)
|
||||
unet.enable_xformers_memory_efficient_attention()
|
||||
if self.train_config.gradient_checkpointing:
|
||||
unet.enable_gradient_checkpointing()
|
||||
@@ -602,19 +572,26 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
self.network.multiplier = 1.0
|
||||
|
||||
|
||||
|
||||
else:
|
||||
params = []
|
||||
# assume dreambooth/finetune
|
||||
if self.train_config.train_text_encoder:
|
||||
text_encoder.requires_grad_(True)
|
||||
text_encoder.train()
|
||||
params += text_encoder.parameters()
|
||||
if self.sd.is_xl:
|
||||
for te in text_encoder:
|
||||
te.requires_grad_(True)
|
||||
te.train()
|
||||
params += te.parameters()
|
||||
else:
|
||||
text_encoder.requires_grad_(True)
|
||||
text_encoder.train()
|
||||
params += text_encoder.parameters()
|
||||
if self.train_config.train_unet:
|
||||
unet.requires_grad_(True)
|
||||
unet.train()
|
||||
params += unet.parameters()
|
||||
|
||||
# TODO recover save if training network. Maybe load from beginning
|
||||
|
||||
### HOOK ###
|
||||
params = self.hook_add_extra_train_params(params)
|
||||
|
||||
@@ -635,12 +612,16 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
### HOOK ###
|
||||
self.hook_before_train_loop()
|
||||
|
||||
if self.has_first_sample_requested:
|
||||
self.print("Generating first sample from first sample config")
|
||||
self.sample(0, is_first=False)
|
||||
|
||||
# sample first
|
||||
if self.train_config.skip_first_sample:
|
||||
self.print("Skipping first sample due to config setting")
|
||||
else:
|
||||
self.print("Generating baseline samples before training")
|
||||
self.sample(0, is_first=True)
|
||||
self.sample(0)
|
||||
|
||||
self.progress_bar = tqdm(
|
||||
total=self.train_config.steps,
|
||||
|
||||
@@ -129,9 +129,12 @@ class TrainSDRescaleProcess(BaseSDTrainProcess):
|
||||
print(f"Saving prompt tensors to {self.rescale_config.prompt_tensors}")
|
||||
state_dict = {}
|
||||
for prompt_txt, prompt_embeds in cache.prompts.items():
|
||||
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu", dtype=get_torch_dtype('fp16'))
|
||||
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu",
|
||||
dtype=get_torch_dtype('fp16'))
|
||||
if prompt_embeds.pooled_embeds is not None:
|
||||
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu", dtype=get_torch_dtype('fp16'))
|
||||
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu",
|
||||
dtype=get_torch_dtype(
|
||||
'fp16'))
|
||||
save_file(state_dict, self.rescale_config.prompt_tensors)
|
||||
|
||||
self.print("Encoding complete.")
|
||||
@@ -158,10 +161,15 @@ class TrainSDRescaleProcess(BaseSDTrainProcess):
|
||||
]
|
||||
prompt = self.prompt_cache[prompt_txt].to(device=self.device_torch, dtype=dtype)
|
||||
prompt.text_embeds.to(device=self.device_torch, dtype=dtype)
|
||||
prompt.pooled_embeds.to(device=self.device_torch, dtype=dtype)
|
||||
neutral = self.prompt_cache[""].to(device=self.device_torch, dtype=dtype)
|
||||
neutral.text_embeds.to(device=self.device_torch, dtype=dtype)
|
||||
neutral.pooled_embeds.to(device=self.device_torch, dtype=dtype)
|
||||
if hasattr(prompt, 'pooled_embeds') \
|
||||
and hasattr(neutral, 'pooled_embeds') \
|
||||
and prompt.pooled_embeds is not None \
|
||||
and neutral.pooled_embeds is not None:
|
||||
prompt.pooled_embeds.to(device=self.device_torch, dtype=dtype)
|
||||
neutral.pooled_embeds.to(device=self.device_torch, dtype=dtype)
|
||||
|
||||
if prompt is None:
|
||||
raise ValueError(f"Prompt {prompt_txt} is not in cache")
|
||||
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
from typing import Union, List, Optional, Dict, Any, Tuple, Callable
|
||||
|
||||
import torch
|
||||
from diffusers import StableDiffusionXLPipeline
|
||||
from diffusers import StableDiffusionXLPipeline, StableDiffusionPipeline
|
||||
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
||||
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
|
||||
|
||||
|
||||
@@ -13,10 +14,7 @@ class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
denoising_end: Optional[float] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
@@ -28,16 +26,9 @@ class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
guidance_rescale: float = 0.0,
|
||||
original_size: Optional[Tuple[int, int]] = None,
|
||||
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
||||
target_size: Optional[Tuple[int, int]] = None,
|
||||
# predict_noise: bool = False,
|
||||
timestep: Optional[int] = None,
|
||||
):
|
||||
r"""
|
||||
@@ -226,8 +217,6 @@ class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
@@ -245,7 +234,7 @@ class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
||||
add_text_embeds = pooled_prompt_embeds
|
||||
add_time_ids = self._get_add_time_ids(
|
||||
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
||||
).to(device) # TODO DOES NOT CAST ORIGINALLY
|
||||
).to(device) # TODO DOES NOT CAST ORIGINALLY
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
@@ -286,3 +275,260 @@ class CustomStableDiffusionXLPipeline(StableDiffusionXLPipeline):
|
||||
print('Called cpu offload', gpu_id)
|
||||
# fuck off
|
||||
pass
|
||||
|
||||
|
||||
class CustomStableDiffusionPipeline(StableDiffusionPipeline):
|
||||
|
||||
# replace the call so it matches SDXL call so we can use the same code and also stop early
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
denoising_end: Optional[float] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
guidance_rescale: float = 0.0,
|
||||
original_size: Optional[Tuple[int, int]] = None,
|
||||
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
||||
target_size: Optional[Tuple[int, int]] = None,
|
||||
):
|
||||
# 0. Default height and width to unet
|
||||
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
||||
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
self.check_inputs(
|
||||
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
|
||||
)
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
text_encoder_lora_scale = (
|
||||
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
)
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
timesteps = self.scheduler.timesteps
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 7. Denoising loop
|
||||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||||
|
||||
# 7.1 Apply denoising_end
|
||||
if denoising_end is not None and type(denoising_end) == float and denoising_end > 0 and denoising_end < 1:
|
||||
discrete_timestep_cutoff = int(
|
||||
round(
|
||||
self.scheduler.config.num_train_timesteps
|
||||
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
||||
)
|
||||
)
|
||||
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
||||
timesteps = timesteps[:num_inference_steps]
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
t,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
callback(i, t, latents)
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
||||
else:
|
||||
image = latents
|
||||
has_nsfw_concept = None
|
||||
|
||||
if has_nsfw_concept is None:
|
||||
do_denormalize = [True] * image.shape[0]
|
||||
else:
|
||||
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
||||
|
||||
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
||||
|
||||
# Offload last model to CPU
|
||||
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
||||
self.final_offload_hook.offload()
|
||||
|
||||
if not return_dict:
|
||||
return (image, has_nsfw_concept)
|
||||
|
||||
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
||||
|
||||
# some of the inputs are to keep it compatible with sdx
|
||||
def predict_noise(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
num_inference_steps: int = 50,
|
||||
guidance_scale: float = 5.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
guidance_rescale: float = 0.0,
|
||||
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
||||
timestep: Optional[int] = None,
|
||||
):
|
||||
|
||||
# 0. Default height and width to unet
|
||||
height = self.unet.config.sample_size * self.vae_scale_factor
|
||||
width = self.unet.config.sample_size * self.vae_scale_factor
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
text_encoder_lora_scale = (
|
||||
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
||||
)
|
||||
prompt_embeds = self._encode_prompt(
|
||||
prompt,
|
||||
device,
|
||||
num_images_per_prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
lora_scale=text_encoder_lora_scale,
|
||||
)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
||||
|
||||
# 5. Prepare latent variables
|
||||
num_channels_latents = self.unet.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, timestep)
|
||||
|
||||
# predict the noise residual
|
||||
noise_pred = self.unet(
|
||||
latent_model_input,
|
||||
timestep,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
cross_attention_kwargs=cross_attention_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
||||
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
||||
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
||||
|
||||
return noise_pred
|
||||
|
||||
Reference in New Issue
Block a user