mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Updates to flow matching algo
This commit is contained in:
@@ -329,24 +329,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
target = self.sd.noise_scheduler.get_velocity(batch.tensor, noise, timesteps)
|
||||
|
||||
elif self.sd.is_flow_matching:
|
||||
# only if preconditioning model outputs
|
||||
# if not preconditioning, (target = noise - batch.latents)
|
||||
|
||||
# if preconditioning outputs, target latents
|
||||
# model_pred = model_pred * (-sigmas) + noisy_model_input
|
||||
if self.train_config.target_noise_multiplier != 1.0:
|
||||
# we are adjusting the target noise, need to recompute the noisy latents with
|
||||
# the noise adjusted above
|
||||
with torch.no_grad():
|
||||
noisy_latents = self.sd.add_noise(batch.latents, noise, timesteps).detach()
|
||||
|
||||
noise_pred = precondition_model_outputs_flow_match(
|
||||
noise_pred,
|
||||
noisy_latents,
|
||||
timesteps,
|
||||
self.sd.noise_scheduler
|
||||
)
|
||||
target = batch.latents.detach()
|
||||
target = (noise - batch.latents).detach()
|
||||
else:
|
||||
target = noise
|
||||
|
||||
@@ -392,14 +375,8 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
loss_per_element = (weighing.float() * (denoised_latents.float() - target.float()) ** 2)
|
||||
loss = loss_per_element
|
||||
else:
|
||||
# handle flow matching ref https://github.com/huggingface/diffusers/blob/ec068f9b5bf7c65f93125ec889e0ff1792a00da1/examples/dreambooth/train_dreambooth_lora_sd3.py#L1485C17-L1495C100
|
||||
if self.sd.is_flow_matching and prior_pred is None:
|
||||
# outputs should be preprocessed latents
|
||||
sigmas = self.sd.noise_scheduler.get_sigmas(timesteps, pred.ndim, dtype, self.device_torch)
|
||||
weighting = torch.ones_like(sigmas)
|
||||
loss = (weighting.float() * (pred.float() - target.float()) ** 2).reshape(target.shape[0], -1)
|
||||
|
||||
elif self.train_config.loss_type == "mae":
|
||||
# handle flow matching ref https://github.com/huggingface/diffusers/blob/ec068f9b5bf7c65f93125ec889e0ff1792a00da1/examples/dreambooth/train_dreambooth_lora_sd3.py#L1485C17-L1495C100
|
||||
if self.train_config.loss_type == "mae":
|
||||
loss = torch.nn.functional.l1_loss(pred.float(), target.float(), reduction="none")
|
||||
else:
|
||||
loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none")
|
||||
|
||||
Submodule repositories/sd-scripts updated: b78c0e2a69...25f961bc77
@@ -13,7 +13,6 @@ from toolkit.paths import SD_SCRIPTS_ROOT
|
||||
sys.path.append(SD_SCRIPTS_ROOT)
|
||||
|
||||
from diffusers import (
|
||||
StableDiffusionPipeline,
|
||||
DDPMScheduler,
|
||||
EulerAncestralDiscreteScheduler,
|
||||
DPMSolverMultistepScheduler,
|
||||
@@ -24,10 +23,8 @@ from diffusers import (
|
||||
EulerDiscreteScheduler,
|
||||
HeunDiscreteScheduler,
|
||||
KDPM2DiscreteScheduler,
|
||||
KDPM2AncestralDiscreteScheduler,
|
||||
StableDiffusion3Pipeline
|
||||
KDPM2AncestralDiscreteScheduler
|
||||
)
|
||||
from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline
|
||||
import torch
|
||||
import re
|
||||
from transformers import T5Tokenizer, T5EncoderModel, UMT5EncoderModel
|
||||
@@ -136,261 +133,6 @@ def match_noise_to_target_mean_offset(noise, target, mix=0.5, dim=None):
|
||||
return noise
|
||||
|
||||
|
||||
def sample_images(
|
||||
accelerator,
|
||||
args: argparse.Namespace,
|
||||
epoch,
|
||||
steps,
|
||||
device,
|
||||
vae,
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
unet,
|
||||
prompt_replacement=None,
|
||||
force_sample=False
|
||||
):
|
||||
"""
|
||||
StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した
|
||||
"""
|
||||
if not force_sample:
|
||||
if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
|
||||
return
|
||||
if args.sample_every_n_epochs is not None:
|
||||
# sample_every_n_steps は無視する
|
||||
if epoch is None or epoch % args.sample_every_n_epochs != 0:
|
||||
return
|
||||
else:
|
||||
if steps % args.sample_every_n_steps != 0 or epoch is not None: # steps is not divisible or end of epoch
|
||||
return
|
||||
|
||||
is_sample_only = args.sample_only
|
||||
is_generating_only = hasattr(args, "is_generating_only") and args.is_generating_only
|
||||
|
||||
print(f"\ngenerating sample images at step / サンプル画像生成 ステップ: {steps}")
|
||||
if not os.path.isfile(args.sample_prompts):
|
||||
print(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
|
||||
return
|
||||
|
||||
org_vae_device = vae.device # CPUにいるはず
|
||||
vae.to(device)
|
||||
|
||||
# read prompts
|
||||
|
||||
# with open(args.sample_prompts, "rt", encoding="utf-8") as f:
|
||||
# prompts = f.readlines()
|
||||
|
||||
if args.sample_prompts.endswith(".txt"):
|
||||
with open(args.sample_prompts, "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
prompts = [line.strip() for line in lines if len(line.strip()) > 0 and line[0] != "#"]
|
||||
elif args.sample_prompts.endswith(".json"):
|
||||
with open(args.sample_prompts, "r", encoding="utf-8") as f:
|
||||
prompts = json.load(f)
|
||||
|
||||
# schedulerを用意する
|
||||
sched_init_args = {}
|
||||
if args.sample_sampler == "ddim":
|
||||
scheduler_cls = DDIMScheduler
|
||||
elif args.sample_sampler == "ddpm": # ddpmはおかしくなるのでoptionから外してある
|
||||
scheduler_cls = DDPMScheduler
|
||||
elif args.sample_sampler == "pndm":
|
||||
scheduler_cls = PNDMScheduler
|
||||
elif args.sample_sampler == "lms" or args.sample_sampler == "k_lms":
|
||||
scheduler_cls = LMSDiscreteScheduler
|
||||
elif args.sample_sampler == "euler" or args.sample_sampler == "k_euler":
|
||||
scheduler_cls = EulerDiscreteScheduler
|
||||
elif args.sample_sampler == "euler_a" or args.sample_sampler == "k_euler_a":
|
||||
scheduler_cls = EulerAncestralDiscreteScheduler
|
||||
elif args.sample_sampler == "dpmsolver" or args.sample_sampler == "dpmsolver++":
|
||||
scheduler_cls = DPMSolverMultistepScheduler
|
||||
sched_init_args["algorithm_type"] = args.sample_sampler
|
||||
elif args.sample_sampler == "dpmsingle":
|
||||
scheduler_cls = DPMSolverSinglestepScheduler
|
||||
elif args.sample_sampler == "heun":
|
||||
scheduler_cls = HeunDiscreteScheduler
|
||||
elif args.sample_sampler == "dpm_2" or args.sample_sampler == "k_dpm_2":
|
||||
scheduler_cls = KDPM2DiscreteScheduler
|
||||
elif args.sample_sampler == "dpm_2_a" or args.sample_sampler == "k_dpm_2_a":
|
||||
scheduler_cls = KDPM2AncestralDiscreteScheduler
|
||||
else:
|
||||
scheduler_cls = DDIMScheduler
|
||||
|
||||
if args.v_parameterization:
|
||||
sched_init_args["prediction_type"] = "v_prediction"
|
||||
|
||||
scheduler = scheduler_cls(
|
||||
num_train_timesteps=SCHEDULER_TIMESTEPS,
|
||||
beta_start=SCHEDULER_LINEAR_START,
|
||||
beta_end=SCHEDULER_LINEAR_END,
|
||||
beta_schedule=SCHEDLER_SCHEDULE,
|
||||
**sched_init_args,
|
||||
)
|
||||
|
||||
# clip_sample=Trueにする
|
||||
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
|
||||
# print("set clip_sample to True")
|
||||
scheduler.config.clip_sample = True
|
||||
|
||||
pipeline = StableDiffusionLongPromptWeightingPipeline(
|
||||
text_encoder=text_encoder,
|
||||
vae=vae,
|
||||
unet=unet,
|
||||
tokenizer=tokenizer,
|
||||
scheduler=scheduler,
|
||||
clip_skip=args.clip_skip,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
pipeline.to(device)
|
||||
|
||||
if is_generating_only:
|
||||
save_dir = args.output_dir
|
||||
else:
|
||||
save_dir = args.output_dir + "/sample"
|
||||
os.makedirs(save_dir, exist_ok=True)
|
||||
|
||||
rng_state = torch.get_rng_state()
|
||||
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
|
||||
|
||||
with torch.no_grad():
|
||||
with accelerator.autocast():
|
||||
for i, prompt in enumerate(prompts):
|
||||
if not accelerator.is_main_process:
|
||||
continue
|
||||
|
||||
if isinstance(prompt, dict):
|
||||
negative_prompt = prompt.get("negative_prompt")
|
||||
sample_steps = prompt.get("sample_steps", 30)
|
||||
width = prompt.get("width", 512)
|
||||
height = prompt.get("height", 512)
|
||||
scale = prompt.get("scale", 7.5)
|
||||
seed = prompt.get("seed")
|
||||
prompt = prompt.get("prompt")
|
||||
|
||||
prompt = replace_filewords_prompt(prompt, args)
|
||||
negative_prompt = replace_filewords_prompt(negative_prompt, args)
|
||||
else:
|
||||
prompt = replace_filewords_prompt(prompt, args)
|
||||
# prompt = prompt.strip()
|
||||
# if len(prompt) == 0 or prompt[0] == "#":
|
||||
# continue
|
||||
|
||||
# subset of gen_img_diffusers
|
||||
prompt_args = prompt.split(" --")
|
||||
prompt = prompt_args[0]
|
||||
negative_prompt = None
|
||||
sample_steps = 30
|
||||
width = height = 512
|
||||
scale = 7.5
|
||||
seed = None
|
||||
for parg in prompt_args:
|
||||
try:
|
||||
m = re.match(r"w (\d+)", parg, re.IGNORECASE)
|
||||
if m:
|
||||
width = int(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"h (\d+)", parg, re.IGNORECASE)
|
||||
if m:
|
||||
height = int(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"d (\d+)", parg, re.IGNORECASE)
|
||||
if m:
|
||||
seed = int(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"s (\d+)", parg, re.IGNORECASE)
|
||||
if m: # steps
|
||||
sample_steps = max(1, min(1000, int(m.group(1))))
|
||||
continue
|
||||
|
||||
m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
|
||||
if m: # scale
|
||||
scale = float(m.group(1))
|
||||
continue
|
||||
|
||||
m = re.match(r"n (.+)", parg, re.IGNORECASE)
|
||||
if m: # negative prompt
|
||||
negative_prompt = m.group(1)
|
||||
continue
|
||||
|
||||
except ValueError as ex:
|
||||
print(f"Exception in parsing / 解析エラー: {parg}")
|
||||
print(ex)
|
||||
|
||||
if seed is not None:
|
||||
torch.manual_seed(seed)
|
||||
torch.cuda.manual_seed(seed)
|
||||
|
||||
if prompt_replacement is not None:
|
||||
prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
|
||||
if negative_prompt is not None:
|
||||
negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])
|
||||
|
||||
height = max(64, height - height % 8) # round to divisible by 8
|
||||
width = max(64, width - width % 8) # round to divisible by 8
|
||||
print(f"prompt: {prompt}")
|
||||
print(f"negative_prompt: {negative_prompt}")
|
||||
print(f"height: {height}")
|
||||
print(f"width: {width}")
|
||||
print(f"sample_steps: {sample_steps}")
|
||||
print(f"scale: {scale}")
|
||||
image = pipeline(
|
||||
prompt=prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_steps,
|
||||
guidance_scale=scale,
|
||||
negative_prompt=negative_prompt,
|
||||
).images[0]
|
||||
|
||||
ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
|
||||
num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
|
||||
seed_suffix = "" if seed is None else f"_{seed}"
|
||||
|
||||
if is_generating_only:
|
||||
img_filename = (
|
||||
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{num_suffix}_{i:02d}{seed_suffix}.png"
|
||||
)
|
||||
else:
|
||||
img_filename = (
|
||||
f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{i:04d}{seed_suffix}.png"
|
||||
)
|
||||
if is_sample_only:
|
||||
# make prompt txt file
|
||||
img_path_no_ext = os.path.join(save_dir, img_filename[:-4])
|
||||
with open(img_path_no_ext + ".txt", "w") as f:
|
||||
# put prompt in txt file
|
||||
f.write(prompt)
|
||||
# close file
|
||||
f.close()
|
||||
|
||||
image.save(os.path.join(save_dir, img_filename))
|
||||
|
||||
# wandb有効時のみログを送信
|
||||
try:
|
||||
wandb_tracker = accelerator.get_tracker("wandb")
|
||||
try:
|
||||
import wandb
|
||||
except ImportError: # 事前に一度確認するのでここはエラー出ないはず
|
||||
raise ImportError("No wandb / wandb がインストールされていないようです")
|
||||
|
||||
wandb_tracker.log({f"sample_{i}": wandb.Image(image)})
|
||||
except: # wandb 無効時
|
||||
pass
|
||||
|
||||
# clear pipeline and cache to reduce vram usage
|
||||
del pipeline
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
torch.set_rng_state(rng_state)
|
||||
if cuda_rng_state is not None:
|
||||
torch.cuda.set_rng_state(cuda_rng_state)
|
||||
vae.to(org_vae_device)
|
||||
|
||||
|
||||
# https://www.crosslabs.org//blog/diffusion-with-offset-noise
|
||||
def apply_noise_offset(noise, noise_offset):
|
||||
if noise_offset is None or (noise_offset < 0.000001 and noise_offset > -0.000001):
|
||||
@@ -591,7 +333,7 @@ def encode_prompts_sd3(
|
||||
truncate: bool = True,
|
||||
max_length=None,
|
||||
dropout_prob=0.0,
|
||||
pipeline: StableDiffusion3Pipeline = None,
|
||||
pipeline = None,
|
||||
):
|
||||
text_embeds_list = []
|
||||
pooled_text_embeds = None # always text_encoder_2's pool
|
||||
|
||||
Reference in New Issue
Block a user