Added ability to do cfg during training. Various bug fixes

This commit is contained in:
Jaret Burkett
2024-01-02 11:29:57 -07:00
parent afc231efc1
commit 65c08b09c3
4 changed files with 71 additions and 4 deletions

View File

@@ -319,6 +319,7 @@ class SDTrainer(BaseSDTrainProcess):
pred_kwargs: dict,
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
unconditional_embeds: Optional[PromptEmbeds] = None,
**kwargs
):
loss = get_guidance_loss(
@@ -331,6 +332,7 @@ class SDTrainer(BaseSDTrainProcess):
batch=batch,
noise=noise,
sd=self.sd,
unconditional_embeds=unconditional_embeds,
**kwargs
)
@@ -618,6 +620,7 @@ class SDTrainer(BaseSDTrainProcess):
pred_kwargs: dict,
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
unconditional_embeds: Optional[PromptEmbeds] = None,
**kwargs
):
# todo for embeddings, we need to run without trigger words
@@ -655,9 +658,13 @@ class SDTrainer(BaseSDTrainProcess):
# self.network.multiplier = 0.0
self.sd.unet.eval()
if unconditional_embeds is not None:
unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype).detach()
prior_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype).detach(),
conditional_embeddings=embeds_to_use.to(self.device_torch, dtype=dtype).detach(),
unconditional_embeddings=unconditional_embeds,
timestep=timesteps,
guidance_scale=1.0,
**pred_kwargs # adapter residuals in here
@@ -901,6 +908,7 @@ class SDTrainer(BaseSDTrainProcess):
self.adapter(conditional_clip_embeds)
with self.timer('encode_prompt'):
unconditional_embeds = None
if grad_on_text_encoder:
with torch.set_grad_enabled(True):
conditional_embeds = self.sd.encode_prompt(
@@ -909,6 +917,15 @@ class SDTrainer(BaseSDTrainProcess):
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
if self.train_config.do_cfg:
# todo only do one and repeat it
unconditional_embeds = self.sd.encode_prompt(
["" for _ in range(noisy_latents.shape[0])],
dropout_prob=self.train_config.prompt_dropout_prob,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
else:
with torch.set_grad_enabled(False):
# make sure it is in eval mode
@@ -923,9 +940,19 @@ class SDTrainer(BaseSDTrainProcess):
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
if self.train_config.do_cfg:
# todo only do one and repeat it
unconditional_embeds = self.sd.encode_prompt(
["" for _ in range(noisy_latents.shape[0])],
dropout_prob=self.train_config.prompt_dropout_prob,
long_prompts=self.do_long_prompts).to(
self.device_torch,
dtype=dtype)
# detach the embeddings
conditional_embeds = conditional_embeds.detach()
if self.train_config.do_cfg:
unconditional_embeds = unconditional_embeds.detach()
# flush()
pred_kwargs = {}
@@ -965,21 +992,43 @@ class SDTrainer(BaseSDTrainProcess):
drop=True,
is_training=True
)
if self.train_config.do_cfg:
unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
torch.zeros(
(noisy_latents.shape[0], 3, 512, 512),
device=self.device_torch, dtype=dtype
).detach(),
is_training=True,
drop=True
)
elif has_clip_image:
conditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
clip_images.detach().to(self.device_torch, dtype=dtype),
is_training=True
)
if self.train_config.do_cfg:
unconditional_clip_embeds = self.adapter.get_clip_image_embeds_from_tensors(
torch.zeros(
(noisy_latents.shape[0], 3, 512, 512),
device=self.device_torch, dtype=dtype
).detach(),
is_training=True,
drop=True
)
else:
raise ValueError("Adapter images now must be loaded with dataloader or be a reg image")
if not self.adapter_config.train_image_encoder:
# we are not training the image encoder, so we need to detach the embeds
conditional_clip_embeds = conditional_clip_embeds.detach()
if self.train_config.do_cfg:
unconditional_clip_embeds = unconditional_clip_embeds.detach()
with self.timer('encode_adapter'):
conditional_embeds = self.adapter(conditional_embeds.detach(), conditional_clip_embeds)
if self.train_config.do_cfg:
unconditional_embeds = self.adapter(unconditional_embeds.detach(), unconditional_clip_embeds)
if self.adapter and isinstance(self.adapter, ReferenceAdapter):
# pass in our scheduler
@@ -1017,6 +1066,7 @@ class SDTrainer(BaseSDTrainProcess):
pred_kwargs=pred_kwargs,
noise=noise,
batch=batch,
unconditional_embeds=unconditional_embeds
)
self.before_unet_predict()
@@ -1032,13 +1082,17 @@ class SDTrainer(BaseSDTrainProcess):
pred_kwargs=pred_kwargs,
batch=batch,
noise=noise,
unconditional_embeds=unconditional_embeds
)
else:
with self.timer('predict_unet'):
if unconditional_embeds is not None:
unconditional_embeds = unconditional_embeds.to(self.device_torch, dtype=dtype)
noise_pred = self.sd.predict_noise(
latents=noisy_latents.to(self.device_torch, dtype=dtype),
conditional_embeddings=conditional_embeds.to(self.device_torch, dtype=dtype),
unconditional_embeddings=unconditional_embeds,
timestep=timesteps,
guidance_scale=1.0,
**pred_kwargs

View File

@@ -156,6 +156,7 @@ class AdapterConfig:
self.image_encoder_arch: str = kwargs.get('image_encoder_arch', 'clip') # clip vit vit_hybrid, safe
self.safe_reducer_channels: int = kwargs.get('safe_reducer_channels', 512)
self.safe_channels: int = kwargs.get('safe_channels', 2048)
self.safe_tokens: int = kwargs.get('safe_tokens', 8)
# clip vision
self.trigger = kwargs.get('trigger', 'tri993r')
@@ -270,6 +271,7 @@ class TrainConfig:
raise ValueError(f"train_turbo is only supported with euler and wuler_a noise schedulers")
self.dynamic_noise_offset = kwargs.get('dynamic_noise_offset', False)
self.do_cfg = kwargs.get('do_cfg', False)
class ModelConfig:

View File

@@ -1,5 +1,5 @@
import torch
from typing import Literal
from typing import Literal, Optional
from toolkit.basic import value_map
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
@@ -193,6 +193,7 @@ def get_direct_guidance_loss(
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
sd: 'StableDiffusion',
unconditional_embeds: Optional[PromptEmbeds] = None,
**kwargs
):
with torch.no_grad():
@@ -222,9 +223,14 @@ def get_direct_guidance_loss(
# sd.network.multiplier = network_weight_list
# do our prediction with LoRA active on the scaled guidance latents
if unconditional_embeds is not None:
unconditional_embeds = unconditional_embeds.to(device, dtype=dtype).detach()
unconditional_embeds = concat_prompt_embeds([unconditional_embeds, unconditional_embeds])
prediction = sd.predict_noise(
latents=torch.cat([unconditional_noisy_latents, conditional_noisy_latents]).to(device, dtype=dtype).detach(),
conditional_embeddings=concat_prompt_embeds([conditional_embeds,conditional_embeds]).to(device, dtype=dtype).detach(),
unconditional_embeddings=unconditional_embeds,
timestep=torch.cat([timesteps, timesteps]),
guidance_scale=1.0,
**pred_kwargs # adapter residuals in here
@@ -482,12 +488,14 @@ def get_guidance_loss(
batch: 'DataLoaderBatchDTO',
noise: torch.Tensor,
sd: 'StableDiffusion',
unconditional_embeds: Optional[PromptEmbeds] = None,
**kwargs
):
# TODO add others and process individual batch items separately
guidance_type: GuidanceType = batch.file_items[0].dataset_config.guidance_type
if guidance_type == "targeted":
assert unconditional_embeds is None, "Unconditional embeds are not supported for targeted guidance"
return get_targeted_guidance_loss(
noisy_latents,
conditional_embeds,
@@ -501,6 +509,7 @@ def get_guidance_loss(
**kwargs
)
elif guidance_type == "polarity":
assert unconditional_embeds is None, "Unconditional embeds are not supported for polarity guidance"
return get_guided_loss_polarity(
noisy_latents,
conditional_embeds,
@@ -515,6 +524,7 @@ def get_guidance_loss(
)
elif guidance_type == "targeted_polarity":
assert unconditional_embeds is None, "Unconditional embeds are not supported for targeted polarity guidance"
return get_targeted_polarity_loss(
noisy_latents,
conditional_embeds,
@@ -538,6 +548,7 @@ def get_guidance_loss(
batch,
noise,
sd,
unconditional_embeds=unconditional_embeds,
**kwargs
)
else:

View File

@@ -184,7 +184,7 @@ class IPAdapter(torch.nn.Module):
self.clip_image_processor = SAFEImageProcessor()
self.image_encoder = SAFEVisionModel(
in_channels=3,
num_tokens=8,
num_tokens=self.config.safe_tokens,
num_vectors=sd.unet.config['cross_attention_dim'],
reducer_channels=self.config.safe_reducer_channels,
channels=self.config.safe_channels,
@@ -234,8 +234,8 @@ class IPAdapter(torch.nn.Module):
dim = sd.unet.config['cross_attention_dim'] if not sd.is_xl else 1280
embedding_dim = self.image_encoder.config.hidden_size if not self.config.image_encoder_arch == "convnext" else self.image_encoder.config.hidden_sizes[-1]
if self.config.image_encoder_arch == 'safe':
embedding_dim = self.config.safe_channels
# if self.config.image_encoder_arch == 'safe':
# embedding_dim = self.config.safe_tokens
# size mismatch for latents: copying a param with shape torch.Size([1, 16, 1280]) from checkpoint, the shape in current model is torch.Size([1, 16, 2048]).
# size mismatch for latents: copying a param with shape torch.Size([1, 32, 2048]) from checkpoint, the shape in current model is torch.Size([1, 16, 1280])
# ip-adapter-plus